8. Untere Schranken für Sortieren

- > Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit $\Omega(n\log(n))$.
- ➤ Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen.
- ➤ Fassen gemeinsame Eigenschaften in Modell des Vergleichssortierers zusammen.
- \triangleright Zeigen dann, dass jeder Vergleichssortierer Laufzeit $\Omega(n\log(n))$ besitzt.

Laufzeit von Sortieralgorithmen

		Laufzeit	
		worst-case	average-case
Algorithmus	Insertion- Sort	$\Theta(n^2)$	$\Theta(n^2)$
	Merge- Sort	$\Theta(n \log(n))$	$\Theta(n \log(n))$
	Quick- sort	$\Theta(n^2)$	$\Theta(n \log(n))$
	Heap- sort	$\Theta(n \log(n))$	-

Vergleichssortierer

Definition 8.1: Ein Vergleichssortierer ist ein Algorithmus, der zu jeder beliebigen Eingabefolge $(a_1, a_2, ..., a_n)$ von Zahlen eine Permutation π berechnet, so dass $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$. Dabei benutzt ein Vergleichssortierer außer den durch den Pseudocode definierten Kontrolloperationen nur die Vergleichsoperationen $=, \ne, \le, \ge, <, >$.

Bemerkungen:

- Wir nehmen an, dass Eingabezahlen immer paarweise verschieden sind. Benötigen daher = nicht.
- Können uns auf den Vergleich ≤ einschränken.
 Andere Vergleichen sind hierzu äquivalent.

Entscheidungsbäume

Definition 8.2: Ein Entscheidungsbaum über n Zahlen ist ein binärer Baum, bei dem

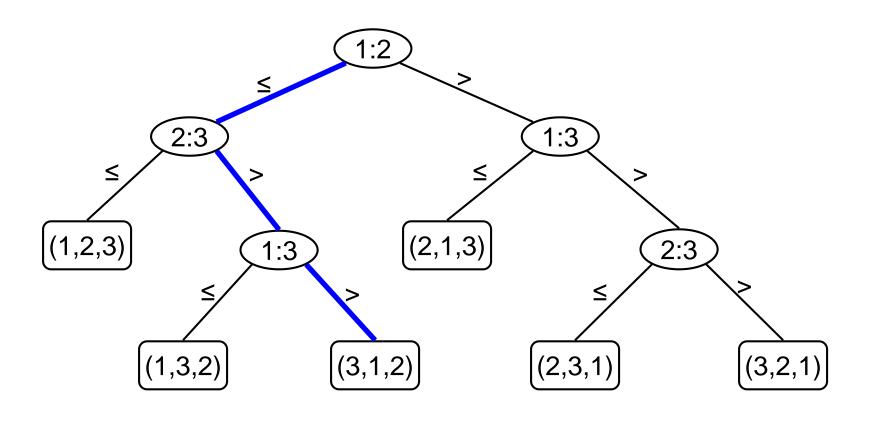
- 1. Jeder innere Knoten mit $i: j, 1 \le i, j \le n$ gelabelt ist.
- 2. Jedes Blatt mit einer Permutation π auf $\{1,...,n\}$ gelabelt ist.

Entscheidungsbäume und Sortieren

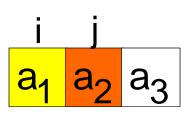
- Mit Entscheidungsbäumen können Vergleichssortierer modelliert werden. Hierzu
 - 1. wird bei Eingabe $(a_1,...,a_n)$ ein Pfad von der Wurzel des Baums zu einem Blatt des Baums durchlaufen.
 - 2. wird an einem inneren Knoten gelabelt mit i:j die Kante zum linken Kind genommen, falls $a_i \le a_j$, sonst wird die Kante zum rechten Kind genommen.
 - 3. wird die Permutation π des Blatts am Ende des Pfades ausgegeben.
- ➤ Zu einem Vergleichssortierer gibt es für jede Eingabegröße *n* einen Entscheidungsbaum.

InsertionSort(Array A)

- 1. for $j \leftarrow 2$ to length(A) do
- 2. $key \leftarrow A[j]$
- 3. $i \leftarrow j-1$
- 4. while i>0 and A[i]>key do
- 5. $A[i+1] \leftarrow A[i]$
- 6. $i \leftarrow i-1$
- 7. $A[i+1] \leftarrow key$



Eingabe : $a_1 = 6, a_2 = 8, a_3 = 5$



$$key = a_2$$

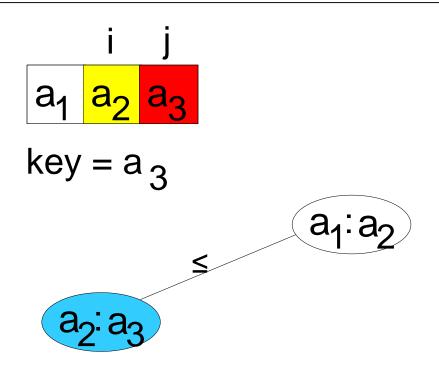

```
InsertionSort(Array A)

for j \leftarrow 2 to length(A) do

key \leftarrow A[j]
i \leftarrow j - 1

while i > 0 and A[i] > key do

A[i+1] \leftarrow A[i]
i \leftarrow i - 1
A[i+1] \leftarrow key
```



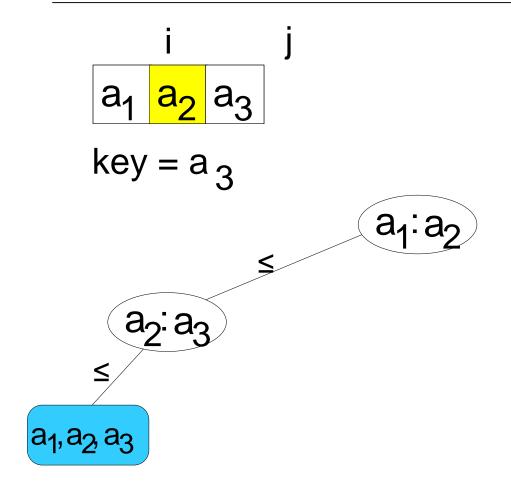
```
InsertionSort(Array A)

for j \leftarrow 2 to length(A) do

key \leftarrow A[j]
i \leftarrow j - 1

while i > 0 and A[i] > key do

A[i+1] \leftarrow A[i]
i \leftarrow i - 1
A[i+1] \leftarrow key
```



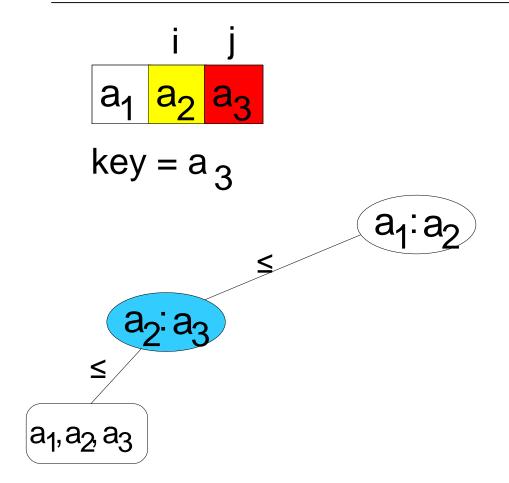
```
InsertionSort(Array A)

for j \leftarrow 2 to length(A) do

key \leftarrow A[j]
i \leftarrow j - 1

while i > 0 and A[i] > key do

A[i+1] \leftarrow A[i]
i \leftarrow i - 1
A[i+1] \leftarrow key
```



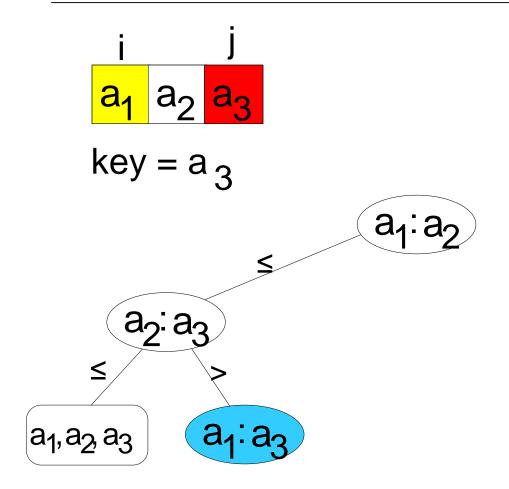
```
InsertionSort(Array A)

for j \leftarrow 2 to length(A) do

key \leftarrow A[j]
i \leftarrow j - 1

while i > 0 and A[i] > key do

A[i+1] \leftarrow A[i]
i \leftarrow i - 1
A[i+1] \leftarrow key
```



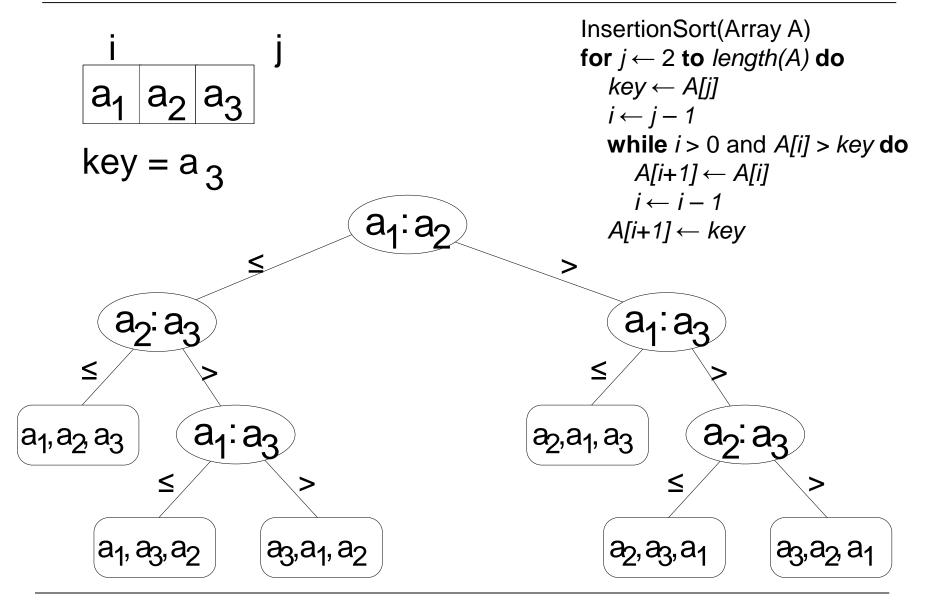
```
InsertionSort(Array A)

for j \leftarrow 2 to length(A) do

key \leftarrow A[j]
i \leftarrow j - 1

while i > 0 and A[i] > key do

A[i+1] \leftarrow A[i]
i \leftarrow i - 1
A[i+1] \leftarrow key
```



Untere Schranke für Vergleichssortierer

Lemma 8.3: Für Eingaben der Größe *n* hat ein Entscheidungsbaum für einen Vergleichssortierer mindestens *n*! Blätter.

Beweis: Wir zeigen, jede Permutation muss in einem der Blätter vorkommen.

- Annahme: eine bestimmte Permutation $(\pi(1), ..., \pi(n))$ kommt nicht vor.
- Wir betrachten die Eingabe ($a_1, ..., a_n$) mit $a_{\pi(1)} < ... < a_{\pi(n)}$.
- Sei $\pi' \neq \pi$ eine beliebige Permutation. Dann gibt es ein j, so dass $\pi'(j) \neq \pi(j)$ (sei o.B.d.A. $a_{\pi'(j)} > a_{\pi(j)}$).
- In der Ausgabe (nach π ') wäre $a_{\pi'(j)}$ nicht an der richtigen Position; somit wäre die Folge nicht sortiert.

Untere Schranke für Vergleichssortierer

Lemma 8.4: $\log(n!) = \Theta(n\log(n))$.

Beweis:

- $n! = 1 \cdot 2 \cdot ... \cdot n > (n/2+1) \cdot ... \cdot n > (n/2)^{n/2}$
- $n! = 1 \cdot 2 \cdot ... \cdot n < n^n$
- $(n/2) \cdot \log(n/2) = \log((n/2)^{n/2}) < \log(n!) < \log(n^n) = n \cdot \log(n)$
- $(n/2) \cdot \log(n/2) = (n/2) \cdot (\log(n)-1) > (n/4) \cdot \log(n)$ für alle n>4

Untere Schranke für Vergleichssortierer

Satz 8.5: Die von einem Vergleichssortierer bei Eingabegröße n benötigte Anzahl von Vergleichen ist $\Omega(n\log(n))$.

Beweis: Ein binärer Baum mit N Blättern hat Höhe mindestens log(N).

- Annahme: Es gibt einen Baum der Höhe log(N)-1 (Anzahl der Ebenen ist log(N)).
- Ebene *i* hat höchstens 2^{*i*} Elemente
- Der Baum hat höchstens 2^{log(N)-1} < N Blätter.

Korollar 8.6: Die von Merge-Sort und Heapsort benötigte Laufzeit von $\Theta(n\log(n))$ ist asymptotisch optimal.