6. Divide & Conquer – Quicksort

- Quicksort ist wie Merge-Sort ein auf dem Divide&Conquer-Prinzip beruhender Sortieralgorithmus.
- Von Quicksort existieren unterschiedliche Varianten, von denen einige in der Praxis besonders effizient sind.
- \triangleright Die worst-case Laufzeit von Quicksort ist $\Theta(n^2)$.
- \triangleright Die durchschnittliche Laufzeit ist jedoch $\Theta(n\log(n))$.
- Eine randomisierte Version von Quicksort besitzt erwartete Laufzeit $\Theta(n\log(n))$.

Quicksort - Idee

Eingabe: Ein zu sortierendes Teilarray A[p...r].

Teilungsschritt: Berechne einen Index $q, p \le q \le r$ und vertausche die Reihenfolge der Elemente in A[p...r], so dass die Elemente in A[p...q-1] nicht größer und die Elemente in A[q+1...r] nicht kleiner sind als A[q].

Eroberungsschritt: Sortiere rekursiv die beiden Teilarrays A[p...q-1] und A[q+1...r].

Kombinationsschritt: Entfällt, da nach Eroberungsschritt das Array A[p...r] bereits sortiert ist.

Quicksort - Pseudocode

Quicksort(A,p,r)

```
1. if p < r
```

- 2. **then** $q \leftarrow \text{Partition}(A, p, r)$
- 3. Quicksort(A,p,q-1)
- 4. Quicksort(A,q+1,r)

Aufruf, um Array A zu sortieren: Quicksort(A,1,length[A])

Partition - Pseudocode

Partition(A,p,r)

```
1. x \leftarrow A[r]

2. i \leftarrow p-1

3. for j \leftarrow p to r-1

4. do if A[j] \leq x

5. then i \leftarrow i+1

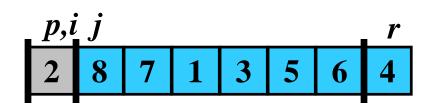
6. A[i] \leftrightarrow A[j]

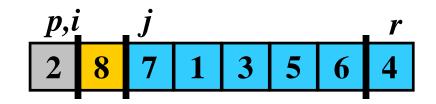
7. A[i+1] \leftrightarrow A[r]

8. return i+1
```

Illustration von Partition (1)







Partition(A,p,r)

1.
$$x \leftarrow A[r]$$

2.
$$i \leftarrow p$$
-1

3. for
$$j \leftarrow p$$
 to r -1

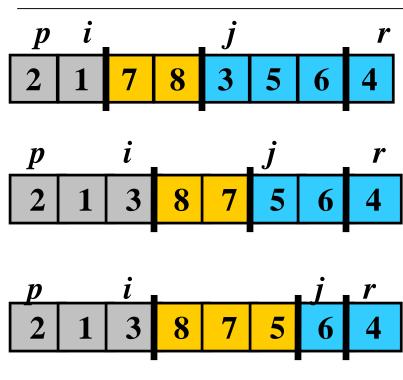
4. do if
$$A[j] \leq x$$

5. then
$$i \leftarrow i + 1$$

6.
$$A[i] \leftrightarrow A[j]$$

7.
$$A[i+1] \leftrightarrow A[r]$$

Illustration von Partition (2)



Partition(A,p,r)

8. **return** *i* + 1

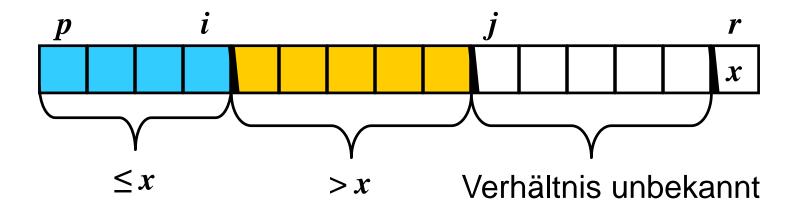
1.
$$x \leftarrow A[r]$$

2. $i \leftarrow p$ -1
3. **for** $j \leftarrow p$ **to** r -1
4. **do if** $A[j] \leq x$
5. **then** $i \leftarrow i+1$
6. $A[i] \leftrightarrow A[j]$
7. $A[i+1] \leftrightarrow A[r]$

Korrektheit von Partition - Invariante

Invariante I(i,j): Für alle k∈{p,...,r} gilt:

- Falls p≤k≤i, dann ist A[k]≤x
- 2. Falls $i+1 \le k \le j-1$, dann ist A[k]>x
- 3. Falls k=r, dann ist A[k]=x



Korrektheit von Partition (1)

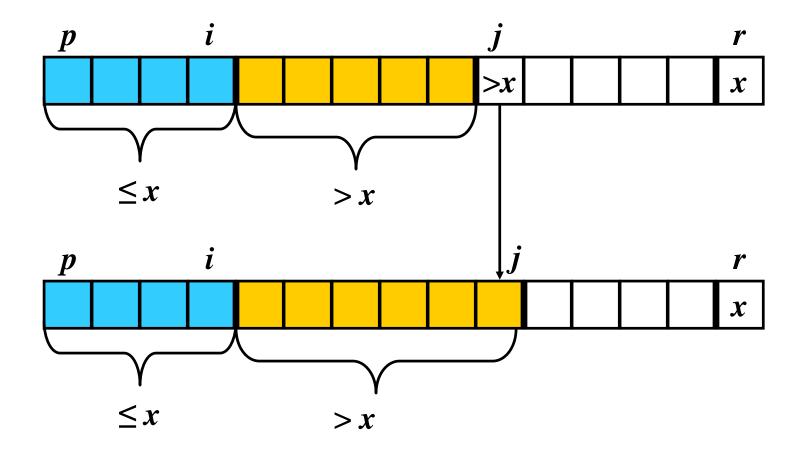
Initialisierung: Vor dem ersten Schleifendurchlauf gilt I(p-1,p), denn in diesem Fall sind die ersten beiden Bedingungen der Invariante leere Aussagen. Die 3. Bedingung gilt aufgrund von Zeile 1 des Partition Algorithmus. Also gilt auch I(i,j) am Anfang des ersten Schleifendurchlaufs.

Erhaltung: Wir unterscheiden zwei Fälle

- 1. A[i] > x
- 2. A[j]≤x

1.Fall: Damit ist dann die 2. Bedingung auch für k=j wahr, d.h. I(i,j+1) gilt.

Erhaltung – 1.Fall

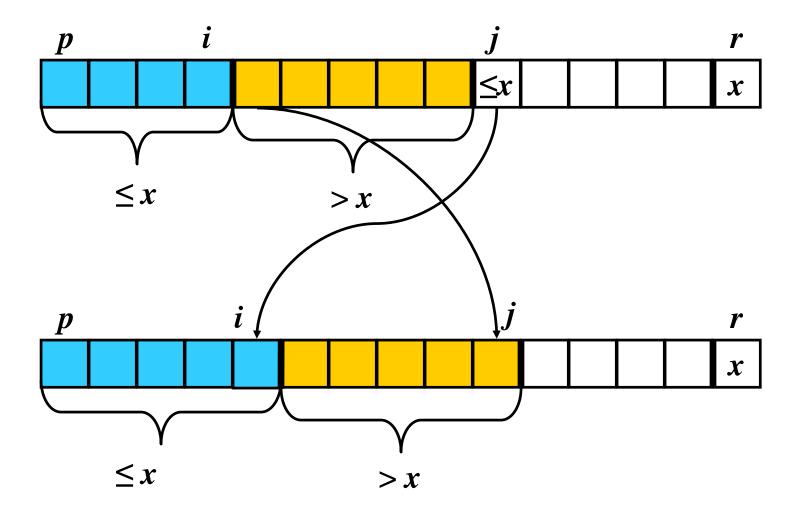


Korrektheit von Partition (2)

2.Fall (A[j] \leq x): In diesem Fall wird A[i+1] (welches > x ist) mit A[j] (welches \leq x ist) vertauscht. Da i auf i+1 gesetzt wird, gilt damit I(i,j+1) nach Abschluss des then-Falls.

In jedem Fall gilt also am Ende der Schleife I(i,j+1).

Erhaltung – 2.Fall



Korrektheit von Partition (3)

Terminierung: Am Ende der Schleife gilt I(i,r), d.h.

- 1. für alle $p \le k \le i$ ist $A[k] \le x$,
- 2. für alle $i+1 \le k \le r-1$ ist A[k]>x und
- 3. für k=r ist A[k]=x.

Nach der Vertauschung von A[i+1] und A[r] gilt daher:

- Für alle p≤k≤i ist A[k]≤x,
- 2. für k=i+1 ist A[k]=x und
- 3. für alle $i+2 \le k \le r$ ist A[k] > x.

Bei Rückgabe von i+1 wird daher die Zahlenfolge korrekt durch die rekursiven Aufrufe sortiert, wie wir noch sehen werden.

Laufzeit von Partition

Partition(A,p,r)

```
1. x \leftarrow A[r]

2. i \leftarrow p-1

3. for j \leftarrow p to r-1

4. do if A[j] \leq x

5. then i \leftarrow i+1

6. A[i] \leftrightarrow A[j]

7. A[i+1] \leftrightarrow A[r]

8. return i+1
```

- Pro Zeile konstante Zeit.
- Schleife Zeilen 3-6 wird n=r-p-mal durchlaufen.

Satz 6.1: Partition hat Laufzeit $\Theta(n)$ bei Eingabe eines Teilarrays mit n Elementen.

Korrektheit von Quicksort

Quicksort(A,p,r)

- 1. If p<r then
- 2. $q \leftarrow Partition(A,p,r)$
- 3. Quicksort(A,p,q-1)
- 4. Quicksort(A,q+1,r)

Behauptung: Quicksort sortiert A[p,...,r]

Potenzialfunktion: $\phi(A,p,r) = r-p$

Bei jeder Ausführung von Quicksort mit rekursiven Aufrufen

- 2. gilt $\phi > 0$, da p<r.

Die Rekursionstiefe ist damit beschränkt auf r-p. Wir können also über die Betrachtung des Initialisierungsfalls und der Erhaltung (in der wir annehmen, dass rekursive Aufrufe korrekt sind), die Korrektheit von Quicksort nachweisen.

Korrektheit von Quicksort

```
Quicksort(A,p,r)
```

- 1. If p<r then
- 2. $q \leftarrow Partition(A,p,r)$
- 3. Quicksort(A,p,q-1)
- 4. Quicksort(A,q+1,r)

Initialisierung: für p≥r ist A[p,...,r] trivialerweise sortiert

Erhaltung (p<r): Wir können annehmen, dass

- am Ende von Partition alle Werte in A[p,...,q-1] ≤A[q] und alle Werte in A[q+1,...,r] ≥A[q] sind (s. Folie 12),
- Quicksort(A,p,q-1) das Feld A[p,...,q-1] und Qicksort(A,q+1,r) das Feld A[q+1,...,r] sortiert.

Dann folgt daraus, dass Quicksort(A,p,r) A[p,...,r] sortiert.

Laufzeit von Quicksort

Satz 6.2: Es gibt ein c>0, so dass für alle n und alle Eingaben der Größe n Quicksort mindestens Laufzeit cnlog(n) besitzt.

Satz 6.3: Quicksort besitzt worst-case Laufzeit $\Theta(n^2)$.

Satz 6.4: Quicksort besitzt average-case Laufzeit $O(n\log(n))$.

Average-case Laufzeit: Betrachten alle Permutationen der n Eingabezahlen. Berechnen für jede Permutation Laufzeit von Quicksort bei dieser Permutation. Average-case Laufzeit ist dann der Durchschnitt über all diese Laufzeiten.

Laufzeit von Quicksort (2)

- Sei Q_E(n) die erwartete Laufzeit von Quicksort für eine zufällige Permutation der Länge n, wobei alle Permutationen gleichwahrscheinlich sind.
- ▶ Die Zahl A[n] ist die i kleinste Zahl mit Wahrscheinlichkeit 1/n für alle $i \in \{1, ..., n\}$.
- $ightharpoonup Q_E(n) \le \frac{1}{n} \sum_{i=1}^n (Q_E(i-1) + Q_E(n-i)) + cn$

Laufzeit von Quicksort (3)

Wir nehmen vereinfacht Gleichheit an (worst case).

$$Arr Q_E(n) = \frac{2}{n} \sum_{k=0}^{n-1} Q_E(k) + cn$$

$$nQ_E(n) = 2\sum_{k=0}^{n-1} Q_E(k) + cn^2$$

$$(n-1)Q_E(n-1) = 2\sum_{k=0}^{n-2} Q_E(k) + c(n-1)^2$$

$$Arr$$
 $nQ_E(n) - (n-1)Q_E(n-1) = 2Q_E(n-1) + c(2n-1)$

$$Arr$$
 $nQ_E(n) = (n+1)Q_E(n-1) + c(2n-1)$

Laufzeit von Quicksort (4)

$$ightharpoonup rac{Q_{E}(n)}{n+1} \le rac{Q_{E}(n-1)}{n} + c rac{2n-1}{n(n+1)} \le rac{Q_{E}(n-1)}{n} + rac{2c}{n}$$

• Wir wissen $\Sigma_{i=2}^n 1/i \le \ln(n)$. Also gilt

$$\frac{Q_E(n)}{n+1} \le \frac{Q_E(1)}{2} + 2c \ln(n) \le 2c(\ln(n)+1)$$

Randomisiertes Quicksort (1)

- Schlechte Eingaben für Quicksort können vermieden werden durch Randomisierung, d.h. der Algorithmus wirft gelegentlich eine Münze, um sein weiteres Vorgehen zu bestimmen.
- Worst-case Laufzeit bei ungünstigen Münzwürfen immer noch $\Theta(n^2)$.
- Es gibt keine schlechten Eingaben. Dies sind Eingaben, bei denen Quicksort bei allen Münzwürfen Laufzeit $\Theta(n^2)$ besitzt.
- Laufzeit ist in diesem Modell erwartete Laufzeit, wobei Erwartungswert über Münzwürfe genommen wird. Erwartete Laufzeit ist Θ(nlog(n)).

Randomisiertes Quicksort (2)

Randomized - Partition(A,p,r)

- 1. $i \leftarrow \text{Random}(p,r)$
- 2. $A[r] \leftrightarrow A[i]$
- 3. **return** Partition(A,p,r)

Hierbei ist Random eine Funktion, die zufällig einen Wert aus [p...r] wählt. Dabei gilt für alle $i \in [p...r]$:

$$Pr(Random(p,r)=i)=\frac{1}{r-p+1}$$
.

Randomisiertes Quicksort (3)

Randomized - Quicksort(*A*,*p*,*r*)

- 1. **if** p < r
- 2. **then** $q \leftarrow \text{Randomized Partition}(A,p,r)$
- 3. Randomized Quicksort(A,p,q-1)
- 4. Randomized Quicksort(A,q+1,r)

Satz 6.5: Die erwartete Laufzeit von Randomized-Quicksort ist $\Theta(n\log(n))$. Dabei ist der Erwartungswert über die Zufallsexperimente in Randomized - Partition genommen.

Median-Quicksort (1)

- Verbesserung der Güte von Aufteilungen, indem nicht ein festes Element zur Aufteilung benutzt wird, sondern z.B. das mittlere von drei Elementen Zur Aufteilung benutzt wird.
- Können etwa drei zufällige Elemente wählen oder A[p], A[q], A[r] mit $q := \lfloor (p+r)/2 \rfloor$.
- Beide Varianten in der Praxis erfolgreich. Aber nur zufällige Variante kann gut analysiert werden:
 Θ(nlog(n)) erwartete Laufzeit.

Median-Quicksort (2)

Median(A,i,j,k)

- 1. if $A[i] \le A[j] \le A[k]$ or $A[k] \le A[j] \le A[i]$ then return j
- 2. if $A[j] \le A[i] \le A[k]$ or $A[k] \le A[i] \le A[j]$ then return i
- 3. if A[i]≤A[k]≤A[j] or A[j]≤A[k]≤A[i] then return k

Median-Partition(A,p,r)

- 1. $i \leftarrow Median(p, (p+r)/2, r)$
- 2. $A[r] \leftrightarrow A[i]$
- 3. **return** Partition(A,p,r)

Median-Quicksort (3)

Median - Quicksort(A,p,r)

```
    1. if p < r</li>
    then q ← Median - Partition(A,p,r)
    Median - Quicksort(A,p,q-1)
    Median - Quicksort(A,q+1,r)
```