
28.06.2017 Kapitel 5 1

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

2

Maximum Cut

Maximum cut. Given an undirected graph G = (V, E) with positive

integer edge weights we, find a node partition (A, B) such that the total

weight of edges crossing the cut is maximized.

Toy application.

 n activities, m people.

 Each person wants to participate in two of the activities.

 Schedule each activity in the morning or afternoon to maximize

number of people that can enjoy both activities.

Real applications. Circuit layout, statistical physics.





),(, ,

:),(
vueBvAu

uvwBAw

3

Maximum Cut

Single-flip neighborhood. Given a partition (A, B), move one node from

A to B, or one from B to A if it improves the solution.

Greedy algorithm.

Max-Cut-Local (G, w) {

Pick a random node partition (A, B)

while ( improving node v) {

if (v is in A) move v to B

else move v to A

}

return (A, B)

}

4

Maximum Cut: Local Search Analysis

Theorem. Let (A, B) be a locally optimal partition and let (A*, B*) be a

global optimal partition. Then w(A, B)  ½ e we  ½ w(A*, B*).

Pf.

 Local optimality implies that for all u  A :

Adding up all these inequalities yields:

 Similarly

 Now,

),(2
 ,},{

BAwww
BvAu

uv

Avu

uv  


),(2

) ,(

},{

) ,(

 ,

) ,(

},{

2
1

2
1

BAwwwww

BAw

Bvu

uv

BAw

BvAu

uv

BAw

Avu

uv

Ee

e 












each edge counted once

weights are nonnegative



wuvvA  wuvvB

),(2
 ,},{

BAwww
AvBu

uv

Bvu

uv  


5

Maximum Cut: Big Improvement Flips

Local search. Within a factor of 2 for MAX-CUT, but not poly-time!

Big-improvement-flip algorithm. Only choose a node which, when

flipped, increases the cut value by at least

Claim. Upon termination, big-improvement-flip algorithm returns a cut

(A, B) with (2 +) w(A, B)  w(A*, B*).

Pf idea. Add to each inequality in original proof.

Claim. Big-improvement-flip algorithm terminates after O(-1 n log W)

flips, where W = e we.

 Each flip improves cut value by at least a factor of (1 + /n).

 After n/ iterations the cut value improves by a factor of 2.

 Cut value can be doubled at most log W times.



2
n

w(A, B)



2
n

w(A, B)

if x  1, (1 + 1/x)x  2

6

Maximum Cut: Context

Theorem. [Sahni-Gonzales 1976] There exists a ½-approximation

algorithm for MAX-CUT.

Theorem. [Goemans-Williamson 1995] There exists an 0.878567-

approximation algorithm for MAX-CUT.

Theorem. [Håstad 1997] Unless P = NP, no 16/17 approximation

algorithm for MAX-CUT.
0.941176



min
0

2





1 cos

7

Neighbor Relations for Max Cut

1-flip neighborhood. (A, B) and (A', B') differ in exactly one node.

k-flip neighborhood. (A, B) and (A', B') differ in at most k nodes.

 (nk) neighbors.

KL-neighborhood. [Kernighan-Lin 1970]

 To form neighborhood of (A, B):

– Iteration 1: flip node from (A, B) that results in best cut value

(A1, B1), and mark that node.

– Iteration i: flip node from (Ai-1, Bi-1) that results in best cut value

(Ai, Bi) among all nodes not yet marked.

 Neighborhood of (A, B) = {(A1, B1), …, (An-1, Bn-1)}.

 Neighborhood includes some very long sequences of flips, but

without the computational overhead of a k-flip neighborhood.

 Practice: powerful and useful framework.

 Theory: explain and understand its success in practice.

cut value of (A1, B1) may be

worse than (A, B)

28.06.2017 Kapitel 5 8

Fragen?

28.06.2017 Kapitel 5 9

Kapitel 5:

Local Search

Inhalt:

• Gradient Descent (Hill Climbing)

• Metropolis Algorithm and Simulated Annealing

• Local Search in Hopfield Neural Networks

• Local Search for Max-Cut

– Single-flip neighborhood

– K-flip neighborhood

– KL-neighborhood

• Nash Equilibria

10

Multicast Routing

Multicast routing. Given a directed graph G = (V, E) with edge costs

ce  0, a source node s, and k agents located at terminal nodes t1, …, tk.

Agent j must construct a path Pj from node s to its terminal tj.

Fair share. If x agents use edge e, they each pay ce / x.

outer

2

outer

middle

4

1 pays

5 + 1

5/2 + 1

middle 4

1

outer

middle

middle

outer

8

2 pays

8

5/2 + 1

5 + 1

s

t1

v

t2

4 8

1 1

5

11

Nash Equilibrium

Best response dynamics. Each agent is continually prepared to improve

its solution in response to changes made by other agents.

Nash equilibrium. Solution where no agent has an incentive to switch.

Fundamental question. When do Nash equilibria exist?

Ex:

 Two agents start with outer paths.

 Agent 1 has no incentive to switch paths

(since 4 < 5 + 1), but agent 2 does (since 8 > 5 + 1).

 Once this happens, agent 1 prefers middle

path (since 4 > 5/2 + 1).

 Both agents using middle path is a Nash

equilibrium.

s

t1

v

t2

4 5 8

1 1

12

Nash Equilibrium and Local Search

Relationship to Local search algorithm. Each agent is continually prepared

to improve its solution in response to changes made by other agents.

Analogies.

 Nash equilibrium : local minima/maxima.

 Best Nash equilibrium : global minima/maxima.

 Best response dynamics : local search algorithm.

 Unilateral move by single agent : local neighborhood.

Contrast. Best-response dynamics need not terminate since no single

objective function is being optimized.

13

Socially Optimum

Social optimum. Minimizes total cost to all agent.

Observation. In general, there can be many Nash equilibria. Even when

its unique, it does not necessarily equal the social optimum.

Examples:

“Braess-Paradoxon”

s

t1

v

t2

3 5 5

1 1

Social optimum = 7

Unique Nash equilibrium = 8

s

t

k1 + 

Social optimum = 1 + 

Nash equilibrium A = 1 + 

Nash equilibrium B = k

k agents

14

Price of Stability

Price of stability. Ratio of best Nash equilibrium to social optimum.

Fundamental question. What is the price of stability?

Ex: Price of stability = (log k).

Social optimum. Everyone takes bottom paths.

Unique Nash equilibrium. Everyone takes top paths.

Price of stability. H(k) / (1 + ).

s

t2 t3 tkt1
. . .

1 1/2 1/3 1/k

0 0 0 0

1 + 

1 + 1/2 + … + 1/k

28.06.2017 Kapitel 5 15

Fragen?

