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Kapitel 6: 

Randomized Algorithms

Inhalt:

• Contention Resolution (symmetry-breaking)

• Global Minimum Cut (contraction algorithm)

• Random Variables and their Expectations
– Guessing Cards

– Coupon Collector

• Max 3-SAT
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Global Minimum Cut

Global min cut.  Given a connected, undirected graph G = (V, E) find a 

cut (A, B) of minimum cardinality.

Applications.  Partitioning items in a database, identify clusters of 

related documents, network reliability, network design, circuit design, 

TSP solvers.
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Contraction Algorithm

Contraction algorithm.  [Karger 1995]

 Pick an edge e = (u, v) uniformly at random.

 Contract edge e.

– replace u and v by single new super-node w

– preserve edges, updating endpoints of u and v to w

– keep parallel edges, but delete self-loops

 Repeat until graph has just two nodes v1 and v2.

 Return the cut (all nodes that were contracted to form v1=A, v2=B).

u v w
contract u-v

a b c

e
f

ca b

f

d
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Contraction Algorithm

Claim.  The contraction algorithm returns a min cut with prob  2/n2.

Pf.  Consider a global min-cut (A*, B*) of G. Let F* be edges with one 

endpoint in A* and the other in B*. Let k = |F*| = size of min cut.

 In first step, algorithm contracts an edge in F* probability k / |E|.

 Every node has degree  k since otherwise (A*, B*) would not be 

min-cut.   |E|  ½kn.

 Thus, algorithm contracts an edge in F* with probability  2/n.

A* B*

F*
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Contraction Algorithm

Claim.  The contraction algorithm returns a min cut with prob  2/n2.

Pf.  Consider a global min-cut (A*, B*) of G. Let F* be edges with one 

endpoint in A* and the other in B*. Let k = |F*| = size of min cut.

 Let G' be the graph after j iterations. There are n' = n-j supernodes.

 Suppose no edge in F* has been contracted. The min-cut in G' is still k.

 Since value of min-cut is k, |E'|  ½kn'.

 Thus, algorithm contracts an edge in F* with probability  2/n'.

 Let Ej = event that an edge in F* is not contracted in iteration j.



Pr[E1 E2  En2  ]  Pr[E1]    Pr[E2  | E1]       Pr[En2  | E1 E2  En3]

 1 2
n  1 2

n1  1 2
4  1 2

3 


n2

n  n3

n1  2
4  1

3 
 2

n(n1)

 2

n2
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Contraction Algorithm

Amplification.  To amplify the probability of success, run the 

contraction algorithm many times.

Claim.  If we repeat the contraction algorithm n2 ln n times with 

independent random choices, the probability of failing to find the 

global min-cut is at most 1/n2.

Pf.  By independence, the probability of failure is at most



1
2

n2











n2 ln n

  1
2

n2











1
2
n2













2ln n

  e1 
2ln n

  
1

n2

(1 - 1/x)x   1/e
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Global Min Cut:  Context

Remark.  Overall running time is slow since we perform (n2 log n) 

iterations and each takes (m) time.

Improvement.  [Karger-Stein 1996]   O(n2 log3n).

 Early iterations are less risky than later ones: probability of 

contracting an edge in min cut hits 50% when n / √2 nodes remain.

 Run contraction algorithm until n / √2 nodes remain.

 Run contraction algorithm twice on resulting graph, and return best of 

two cuts. 

Extensions.  Naturally generalizes to handle positive weights.

Best known.  [Karger 2000] O(m log3n).

faster than best known max flow algorithm or
deterministic global min cut algorithm
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Expectation

Expectation.  Given a discrete random variables X, its expectation E[X] 

is defined by:

Waiting for a first success.  Coin is heads with probability p and tails 

with probability 1-p.  How many independent flips X until first heads?


E[X ]  j Pr[X  j]
j0







E[X]  j  Pr[X  j]
j0



  j (1 p) j1 p
j0



 
p

1 p
j (1 p) j

j0



 
p

1 p

1 p

p2


1

p

j-1 tails 1 head
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Expectation:  Two Properties

Useful property.  If X is a 0/1 random variable, E[X] = Pr[X = 1].

Pf. 

Linearity of expectation.  Given two random variables X and Y defined 
over the same probability space, E[X + Y] = E[X] + E[Y].

Decouples a complex calculation into simpler pieces. 



E[X ]  j  Pr[X  j]
j0



  j  Pr[X  j]
j0

1

   Pr[X 1]

not necessarily independent
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Guessing Cards

Game.  Shuffle a deck of n cards; turn them over one at a time; try to 

guess each card.

Memoryless guessing.  No psychic abilities; can't even remember what's 

been turned over already.  Guess a card from full deck uniformly at 

random.

Claim.  The expected number of correct guesses is 1.

Pf.  (surprisingly effortless using linearity of expectation)

 Let Xi = 1 if ith prediction is correct and 0 otherwise.

 Let X = number of correct guesses = X1 + … + Xn.

 E[Xi] =  Pr[Xi = 1]  =  1/n.

 E[X]  =  E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/n  =  1.  ▪

linearity of expectation
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Guessing Cards

Game.  Shuffle a deck of n cards; turn them over one at a time; try to 

guess each card.

Guessing with memory. Guess a card uniformly at random from cards 

not yet seen.

Claim.  The expected number of correct guesses is (log n).

Pf.

 Let Xi = 1 if ith prediction is correct and 0 otherwise.

 Let X = number of correct guesses = X1 + … + Xn.

 E[Xi] = Pr[Xi = 1]  = 1 / (n - i + 1).

 E[X]  = E[X1]  +  …  +  E[Xn]  =  1/n + … + 1/2 + 1/1 = H(n).  ▪

ln(n+1) < H(n)  < 1 + ln nlinearity of expectation
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Coupon Collector

Coupon collector.  Each box of “Hanuta” contains a coupon. There are n 

different types of coupons. Assuming all boxes are equally likely to 

contain each coupon, how many boxes before you have  1 coupon of 

each type?

Claim.  The expected number of steps is (n log n).

Pf.

 Phase j = time between j and j+1 distinct coupons.

 Let Xj = number of steps you spend in phase j.

 Let X = number of steps in total = X0 + X1 + … + Xn-1.



E[X ]  E[X j ]
j0

n1

 
n

n jj0

n1

  n
1

ii1

n

  nH (n)

prob of success = (n-j)/n
 expected waiting time = n/(n-j)
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Maximum 3-Satisfiability

MAX-3SAT.  Given 3-SAT formula, find a truth assignment that 

satisfies as many clauses as possible.

Remark.  NP-hard search problem.

Simple idea.  Flip a coin, and set each variable true with probability ½, 

independently for each variable.



C1  x2  x3  x4

C2  x2  x3  x4

C3  x1  x2  x4

C4  x1  x2  x3

C5  x1  x2  x4

exactly 3 distinct literals per clause
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Claim. Given a 3-SAT formula with k clauses, the expected number of 

clauses satisfied by a random assignment is 7k/8.

Pf.  Consider random variable 

 Let Z = number of clauses satisfied by assignment Zj , j=1, …, k.

= Z1 + Z2 + … + Zk = number of satisfied clauses



E[Z ]  E[Z j
j1

k

 ] 

 Pr[clause C j  is satisfied
j1

k

 ]

 7
8
k

Maximum 3-Satisfiability:  Analysis



Z j 
1 if clause C j  is satisfied

0 otherwise.





linearity of expectation
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Corollary. For any instance of 3-SAT, there exists a truth assignment 

that satisfies at least a 7/8 fraction of all clauses.

Pf.  Random variable is at least its expectation some of the time.   ▪

Probabilistic method. We showed the existence of a non-obvious 

property of 3-SAT by showing that a random construction produces it 

with positive probability!

The Probabilistic Method
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Maximum 3-Satisfiability:  Analysis

Q. Can we turn this idea into a 7/8-approximation algorithm?  In 

general, a random variable can almost always be below its mean.

Lemma.  The probability that a random assignment satisfies  7k/8 

clauses is at least 1/(8k).

Pf.  Let pj be the probability that exactly j clauses are satisfied;        

let p be probability that  7k/8 clauses are satisfied.

Rearranging terms yields  p  1 / (8k).    ▪



7
8
k    E[Z ]  j p j

j0



 j p j     j p j
j7k /8


j7k /8



 ( 7k
8
 1

8
) p j      k p j

j7k /8


j7k /8



 ( 7
8
k  1

8
)    1      k p
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Maximum 3-Satisfiability:  Analysis

Johnson's algorithm.  Repeatedly generate random truth assignments 

until one of them satisfies  7k/8 clauses.

Theorem.  Johnson's algorithm is a 7/8-approximation algorithm.

Pf.  By previous lemma, each iteration succeeds with probability at 

least 1/(8k).  By the waiting-time bound, the expected number of trials 

to find the satisfying assignment is at most 8k.   ▪
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Maximum Satisfiability

Extensions.

 Allow one, two, or more literals per clause.

 Find max weighted set of satisfied clauses.

Theorem.  [Asano-Williamson 2000] There exists a 0.784-

approximation algorithm for MAX-SAT.

Theorem.  [Karloff-Zwick 1997, Zwick+computer 2002] There exists a 

7/8-approximation algorithm for version of MAX-3SAT where each 

clause has at most 3 literals.

Theorem.  [Håstad 1997] Unless P = NP, no -approximation algorithm 

for MAX-3SAT (and hence MAX-SAT) for any  > 7/8.

very unlikely to improve over simple randomized
algorithm for MAX-3SAT
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Monte Carlo vs. Las Vegas Algorithms

Monte Carlo algorithm.  Guaranteed to run in poly-time, likely to find 

correct answer.

Ex:  Contraction algorithm for global min cut.

Las Vegas algorithm.  Guaranteed to find correct answer, likely to run 

in poly-time.

Ex:  Randomized quicksort, Johnson's MAX-3SAT algorithm.

Remark.  Can always convert a Las Vegas algorithm into Monte Carlo, 

but no known method to convert the other way.

stop algorithm after a certain point
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RP and ZPP

RP. [Monte Carlo] Decision problems solvable with one-sided error in 

poly-time.

One-sided error.

 If the correct answer is no, always return no.

 If the correct answer is yes, return yes with probability  ½.

ZPP.  [Las Vegas] Decision problems solvable in expected poly-time.

Theorem.  P   ZPP  RP   NP.

Fundamental open questions.  To what extent does randomization help? 

Does P = ZPP?  Does ZPP = RP?  Does RP = NP?

Can decrease probability of false negative
to 2-100 by 100 independent repetitions

running time can be unbounded, but 
on average it is fast
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