Kapitel 2: Divide & Conquer

Inhalt:

« Finding the Closest Pair of Points

« Convolutions and the Fast Fourier Transform (FFT)

10.05.2017 Kapitel 2 1

Fourier Analysis

Fourier theorem. [Fourier, Dirichlet, Riemann] Any periodic function

can be expressed as the sum of a series of sinusoids. sufficiently smaoth

N =100

Euler's Identity

Sinusoids. Sum of sine an cosines.

Euler's identity

Sinusoids. Sum of complex exponentials.

Time Domain vs. Frequency Domain

Signal. [touch tone button 1] y() = }sin(27 - 697 1) + § sin(2z - 1209 1)

©

Time domain.

sound
pressure

0 0.005 0.01 0.015
time (seconds)

Frequency domain.

amplitude

o 1 1 1 1 1
400 600 800 1000 1200 1400 1600
frequency (Hz)

Reference: Cleve Moler, Numerical Computing with MATLAB

Fast Fourier Transform

FFT. Fast way to convert between time-domain and frequency-domain.

Alternate viewpoint. Fast way to multiply and evaluate polynomials.
\

we take this approach

If you speed up any nontrivial algorithm by a factor of a
million or so the world will beat a path towards finding
useful applications for it. -Numerical Recipes

Fast Fourier Transform: Brief History

Gauss (1805, 1866). Analyzed periodic motion of asteroid Ceres.
Runge-Kénig (1924). Laid theoretical groundwork.
Danielson-Lanczos (1942). Efficient algorithm, x-ray crystallography.

Cooley-Tukey (1965). Monitoring nuclear tests in Soviet Union and
tracking submarines. Rediscovered and popularized FFT.

Importance not fully realized until advent of digital computers.

Fast Fourier Transform: Applications

Applications.

« Optics, acoustics, quantum physics, telecommunications, radar,
control systems, signal processing, speech recognition, data
compression, image processing, seismology, mass spectrometry...

- Digital media. [DVD, JPEG, MP3, H.264]

« Medical diagnostics. [MRI, CT, PET scans, ultrasound]

= Numerical solutions to Poisson's equation.

« Shor's quantum factoring algorithm.

The FFT is one of the truly great computational
developments of [the 20th] century. It has changed the
face of science and engineering so much that it is not an
exaggeration to say that life as we know it would be very
different without the FFT. -Charles van Loan

Polynomials: Coefficient Representation

Polynomial. [coefficient representation]

A(X)=a, +aX+a,x> +---+a, X"

B(x) = bO +b1x_|_b2x2 et bn—lxn_l

Add: O(n) arithmetic operations.

A(X)+ B(X) = (8, +by)+(a, +b)x+---+ (@, +b,)x""

Evaluate: O(n) using Horner's method.

A(x)=ag+(x(ay +x(ay +---+x(a,_p +x(a,_1))-))

Multiply (convolve): O(n?) using brute force.

2n-2] i

i=0 j=0

Polynomials: Point-Value Representation

Fundamental theorem of algebra. [Gauss, PhD thesis] A degree n
polynomial with complex coefficients has n complex roots.

Corollary. A degree n-1 polynomial A(x) is uniquely specified by its
evaluation at n distinct values of x.

v

10

Polynomials: Point-Value Representation

Polynomial. [point-value representation]

A(X): (Xgs Yo)s ++os (Xips Yng)
B(X): (X¢> Zg), -+-» X1 2y)

Add: O(n) arithmetic operations.

A(X)+ B(X) : (X07 yO + 20)7 ce (Xn-b yn—l + Zn—l)
Multiply: O(n), but need 2n points.

AX) x B(X) 1 (Xg> Yo% Zp)s -5 (Xan 15 Yan X Zony)

Evaluate: O(n?) using Lagrange's formula.

ol H(X_Xj)
A _ JEZ
) kz=2)yk [T(x - Xj)

JES

1

Converting Between Two Polynomial Representations

Tradeoff. Fast evaluation or fast multiplication. We want both!

Representation Multiply

Coefficient O(n?) o(n)
Point-value O(n) O(n?)

Goal. Make all ops fast by efficiently converting between two
representations.

v

ao, al,..., an_l (XO) y0)9 e (Xn—19 yn—l)

<
<

coefficient point-value
representation representation

12

Converting Between Two Polynomial Representations: Brute Force

Coefficient to point-value. Given a polynomial ay + a; x + ... + a4 X",
evaluate it at n distinct points xg, ... , X,.1.

Yo | Xo Xg X(r)‘_1 a, O(n?) for matrix-vector multiply
2 -1
— 2 -1
2 n-1
L Y1 - |1 X Xpo o0 X L Apo O(n3) for Gaussian elimination
!

Vandermonde matrix is invertible iff x; distinct

Point-value to coefficient. Given n distinct points x,, ..., X,.; and values
Yo. ---. Yn.1, find unique polynomial a5 + a; x + ... + a,; X" that has given
values at given points.

13

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ay + a; x + ... + a4 X",
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = ag+ apx + X%+ azx3+ asxt + agx® + agx0 +asx’.
- Aeven(x) = Qo+ X + C(4X2 + 06x3-
- Ag(X) = ay +azx + azx? + a;x3.
e ACX) = Ao (X7 * X Agg(X?)
e ACX) = Agyen(X) - X AggdXP)

Intuition. Choose two points to be +1.

" A(1) = Aeven(l) +1 Aodd(l)-
- ACFD = A,.(D)-1TA, D). Can evaluate polynomial of degree <n
at 2 points by evaluating two polynomials

of degree < 3n at 1 point.

14

Coefficient to Point-Value Representation: Intuition

Coefficient to point-value. Given a polynomial ay + a; x + ... + a4 X",
evaluate it at n distinct points xg, ... , X,.1.

Divide. Break polynomial up into even and odd powers.
- A(X) = ag+ apx + X%+ azx3+ asxt + agx® + agx0 +asx’.
- Aeven(x) = Qo+ X + C(4X2 + 06x3-
- Ag(X) = ay +azx + azx? + a;x3.
e ACX) = Ao (X7 * X Agg(X?)
e ACX) = Agyen(X) - X AggdXP)

Intuition. Choose four pointsto be £1, i.

- A(1) = Aeven(1) +1 Aodd(1)

- ACD = A, (D-1A (). Can evaluate polynomial of degree <n
A(D)= Ay (-1) +i Agy(-1) at 4 points by evaluating two polynomials

- ~ Mleven 0 .

. . of degree < 3n at 2 points.
e A = Ay (1) - i Aggy(-1). :

15

Discrete Fourier Transform

Coefficient to point-value. Given a polynomial ap +a; x + ... + a1 X",
evaluate it at n distinct points xg, ... , X,.1.

Key idea: choose x, = o* where o is principal n™h root of unity.

I T

Discrete Fourier tfransform Fourier matrix F,

16

Roots of Unity

Def. Ann™ root of unity is a complex number x such that x" = 1.

Fact. The n' roots of unity are: o°, !, ..., o"! where o = e 27i/n,
Pf. (oK) = (e 2nik/n)n = (gmi)2k = (-1)2k = 1,

Fact. The $n'™ roots of unity are: vO, v!, .., vV where v = e 4ri/n,
Fact. @®=v and (0?)k = vk

17

Fast Fourier Transform

Goal. Evaluate a degree n-1 polynomial A(x) = ag + ... + a1 X" at its n*h
roots of unity: o°, o!, ..., o™,

Divide. Break polynomial up into even and odd powers.
e Agen(X) = gt aX + X%+ .+ a, , XV
- Ayg(X) = a;+azx +asx®+ .+, XV2L
- A(X) = Aeven(xz) + X Aodd(xz)-

Conquer. Evaluate degree A,,.,(x) and A 44(x) at the zn™ roots of
unity: vO, vi, . w2l

Combine.
- A(0K) = AL (VK + ok Agq(VK), O<k<n/2
. A(Q)k+1/2n) = Aeven(\/k) - (Dk Aodd(Vk): O < k < n/Z

18

FFT Algorithm

19

FFT Summary

Theorem. FFT algorithm evaluates a degree n-1 polynomial at each of
the n™ roots of unity in O(n log n) steps. T

assumes n is a power of 2

Running time. T(2n) = 2T(n) + O(n) = T(n) = O(n log n).

O(n log n)

v

A, Apy--er Ay g (a)o, Yo) -+ (a)”_l, Yi)

<
<

coefficient point-value
representation representation

20

Point-Value to Coefficient Representation: Inverse DFT

Goal. Given the valuesyy, ..., y,.; of a degree n-1 polynomial at the n
points o°, ®!, ..., o1, find unique polynomial ay + a; x + ... + a,; X" that
has given values at given points.

T I

Inverse DFT Fourier matrix inverse (F,)!

21

Inverse FFT

Claim. Inverse of Fourier matrix is given by following formula.

Consequence. To compute inverse FFT, apply same algorithm but use
ol = e -2ri/nqg principal n™ root of unity (and divide by n).

22

Inverse FFT: Proof of Correctness

Claim. F,and G, are inverses.

Pf.
(F G)kk' = l ”Z_,‘lwkj (D—jk’ _ l nz—:l O)(k—k')j _ { 1 ifk=k
n >n n j=o n j-o T 0 otherwise

summation lemma

Summation lemma. Let o be a principal n™ root of unity. Then

nz—:l ki {n if k=0 mod n
()] =
=0 0 otherwise

Pf.
. If kis amultiple of nthen ok =1 = sums ton.

. Each n™ root of unity oX is aroot of x"-1=(x-1)(1+x+x2+ ... +x"1),

. ifokzlwehave: 1+ o+ k@ + +k-D=0 = sumstoO. -

23

Inverse FFT: Algorithm

24

Inverse FFT Summary

Theorem. Inverse FFT algorithm interpolates a degree n-1 polynomial
given values at each of the n* roots of unity in O(n log n) steps.

!

assumes n is a power of 2

O(n log n)

»
>

A, Apy--er Ay g (a)o, Yo) -+ (a)”_l, Yi)

<
<

coefficient O(n log n) point-value
representation representation

25

Polynomial Multiplication

Theorem. Can multiply two degree n-1 polynomials in O(n log n) steps.

coefficient
representation

Qg Apy-eep Ay g
by, by, ..., 0.

2 FFTs O(n log n)

v

A(XO)9 ceeo A(X2n-1)

point-value multiplication

coefficient
representation

Co> Ci» -
4

inverse FFT

B(Xg), ..., B(X5n.1)

O(n)

++> Cono

O(n log n)

> C(XO), C(X1)9 R C(X2n—1)

26

Fragen?

27

