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Algorithmic Paradigms

Greedy.  Build up a solution incrementally, myopically optimizing some 

local criterion.

Divide-and-conquer.  Break up a problem into two sub-problems, solve 

each sub-problem independently, and combine solution to sub-problems 

to form solution to original problem. 

Dynamic programming. Break up a problem into a series of overlapping 

sub-problems, and build up solutions to larger and larger sub-problems.
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Dynamic Programming Applications

Areas. 

 Bioinformatics.

 Control theory.

 Information theory.

 Operations research.

 Computer science:  theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms. 

 Viterbi for hidden Markov models.

 Unix diff for comparing two files.

 Smith-Waterman for sequence alignment.

 Bellman-Ford for shortest path routing in networks.

 Cocke-Kasami-Younger for parsing context free grammars.
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Weighted Interval Scheduling

Weighted interval scheduling problem.

 Job j starts at sj, finishes at fj, and has weight or value vj . 

 Two jobs compatible if they don't overlap.

 Goal:  find maximum weight subset of mutually compatible jobs.
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Unweighted Interval Scheduling Review

Recall.  Greedy algorithm works if all weights are 1.

 Consider jobs in ascending order of finish time.

 Add job to subset if it is compatible with previously chosen jobs.

Observation.  Greedy algorithm can fail spectacularly if arbitrary 

weights are allowed.
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Weighted Interval Scheduling

Notation.  Label jobs by finishing time:  f1   f2   . . .  fn .

Def.  p(j) = largest index i < j such that job i is compatible with j.

Ex:  p(8) = 5, p(7) = 3, p(2) = 0.
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Dynamic Programming:  Binary Choice

Notation.  OPT(j) = value of optimal solution to the problem consisting 

of job requests 1, 2, ..., j.

 Case 1:  OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  p(j)

 Case 2:  OPT does not select job j.

– must include optimal solution to problem consisting of remaining 

compatible jobs 1, 2, ...,  j-1

  



OPT ( j)
0 if  j 0

max v j  OPT ( p( j)), OPT ( j1)  otherwise





optimal substructure



10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling:  Brute Force

Brute force algorithm.

demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
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Weighted Interval Scheduling:  Brute Force

Observation.  Recursive algorithm fails spectacularly because of 

redundant sub-problems   exponential algorithms.

Ex.  Number of recursive calls for family of "layered" instances grows 

like Fibonacci sequence.
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Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling:  Memoization

Memoization.  Store results of each sub-problem in a cache; lookup as 

needed.
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Weighted Interval Scheduling:  Running Time

Claim.  Memoized version of algorithm takes O(n log n) time.

 Sort by finish time:  O(n log n).

 Computing p() :  O(n) after sorting by start time.

 M-Compute-Opt(j):  each invocation takes O(1) time and either

– (i)  returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure  = # nonempty entries of M[].

– initially  = 0,  throughout   n. 

– (ii) increases  by 1   at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n).   ▪

Remark.  O(n) if jobs are pre-sorted by start and finish times.
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Weighted Interval Scheduling:  Finding a Solution

Q.  Dynamic programming algorithms computes optimal value.  What if 

we want the solution itself?

A.  Do some post-processing.

 # of recursive calls  n   O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)

output nothing

else if (vj + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

else

Find-Solution(j-1)

}
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Weighted Interval Scheduling:  Bottom-Up

Bottom-up dynamic programming.  Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

}
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Segmented Least Squares

Least squares.

 Foundational problem in statistic and numerical analysis.

 Given n points in the plane:  (x1, y1), (x2, y2) , . . . , (xn, yn).

 Find a line y = ax + b that minimizes the sum of the squared error: 

Solution.  Calculus   min error is achieved when

  



SSE  (yi  axi b)2

i1

n



  



a 
n xi yi  ( xi )i ( yi )ii

n xi
2
 ( xi )

2

ii
, b 

yi  a xiii

n

x

y
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Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

 x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q.  What's a reasonable choice for f(x) to balance accuracy and 

parsimony?

x
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number of lines
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Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with 

 x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

 Tradeoff function:  E + c L, for some constant c > 0.

x

y
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Dynamic Programming:  Multiway Choice

Notation.

 OPT(j) = minimum cost for points p1, . . . , pj.

 e(i, j)   = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

 Last segment uses points pi, pi+1 , . . . , pj for some i.

 Cost = e(i, j) + c + OPT(i-1).

  



OPT ( j) 
0 if  j 0

min
1 i  j

e(i, j)  c  OPT (i 1)  otherwise






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Segmented Least Squares:  Algorithm

Running time.  O(n3).

 Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using 

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

M[0] = 0

for j = 1 to n

for i = 1 to j

compute the least square error eij for

the segment pi,…, pj

for j = 1 to n

M[j] = min 1  i  j (eij + c + M[i-1])

return M[n]

}

can be improved to O(n2) by pre-computing various statistics


