
17.05.2017 Kapitel 3 1

Kapitel 3: Dynamic Programming

2

Algorithmic Paradigms

Greedy. Build up a solution incrementally, myopically optimizing some

local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve

each sub-problem independently, and combine solution to sub-problems

to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping

sub-problems, and build up solutions to larger and larger sub-problems.

3

4

Dynamic Programming Applications

Areas.

 Bioinformatics.

 Control theory.

 Information theory.

 Operations research.

 Computer science: theory, graphics, AI, systems, ….

Some famous dynamic programming algorithms.

 Viterbi for hidden Markov models.

 Unix diff for comparing two files.

 Smith-Waterman for sequence alignment.

 Bellman-Ford for shortest path routing in networks.

 Cocke-Kasami-Younger for parsing context free grammars.

17.05.2017 Kapitel 3 5

Kapitel 3: Dynamic Programming

Inhalt:

• Weighted Interval Scheduling

• Segmented Least Squares

• Knapsack Problem

• Sequence Alignment

6

Weighted Interval Scheduling

Weighted interval scheduling problem.

 Job j starts at sj, finishes at fj, and has weight or value vj .

 Two jobs compatible if they don't overlap.

 Goal: find maximum weight subset of mutually compatible jobs.

Time
0 1 2 3 4 5 6 7 8 9 10 11

f

g

h

e

a

b

c

d

7

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

 Consider jobs in ascending order of finish time.

 Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary

weights are allowed.

Time
0 1 2 3 4 5 6 7 8 9 10 11

b

a

weight = 999

weight = 1

8

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f1  f2  . . .  fn .

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8) = 5, p(7) = 3, p(2) = 0.

Time
0 1 2 3 4 5 6 7 8 9 10 11

6

7

8

4

3

1

2

5

9

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting

of job requests 1, 2, ..., j.

 Case 1: OPT selects job j.

– can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., p(j)

 Case 2: OPT does not select job j.

– must include optimal solution to problem consisting of remaining

compatible jobs 1, 2, ..., j-1



OPT (j)
0 if j 0

max v j  OPT (p(j)), OPT (j1)  otherwise





optimal substructure

10

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {

if (j = 0)

return 0

else

return max(vj + Compute-Opt(p(j)), Compute-Opt(j-1))

}

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)
demo-activity-selection.ppt#1. Activity%20Selection%20(Interval%20Scheduling)

11

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of

redundant sub-problems  exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows

like Fibonacci sequence.

3

4

5

1

2

p(1) = 0, p(j) = j-2

5

4 3

3 2 2 1

2 1

1 0

1 0 1 0

0

0 0 0

0

12

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

for j = 1 to n

M[j] = empty

M[0] = 0

M-Compute-Opt(j) {

if (M[j] is empty)

M[j] = max(vj + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))

return M[j]

}

global array

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as

needed.

13

Weighted Interval Scheduling: Running Time

Claim. Memoized version of algorithm takes O(n log n) time.

 Sort by finish time: O(n log n).

 Computing p() : O(n) after sorting by start time.

 M-Compute-Opt(j): each invocation takes O(1) time and either

– (i) returns an existing value M[j]

– (ii) fills in one new entry M[j] and makes two recursive calls

 Progress measure  = # nonempty entries of M[].

– initially  = 0, throughout   n.

– (ii) increases  by 1  at most 2n recursive calls.

 Overall running time of M-Compute-Opt(n) is O(n). ▪

Remark. O(n) if jobs are pre-sorted by start and finish times.

14

Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if

we want the solution itself?

A. Do some post-processing.

 # of recursive calls  n  O(n).

Run M-Compute-Opt(n)

Run Find-Solution(n)

Find-Solution(j) {

if (j = 0)

output nothing

else if (vj + M[p(j)] > M[j-1])

print j

Find-Solution(p(j))

else

Find-Solution(j-1)

}

15

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1  f2  ...  fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {

M[0] = 0

for j = 1 to n

M[j] = max(vj + M[p(j)], M[j-1])

}

17.05.2017 Kapitel 3 16

Kapitel 3: Dynamic Programming

Inhalt:

• Weighted Interval Scheduling

• Segmented Least Squares

• Knapsack Problem

• Sequence Alignment

17

Segmented Least Squares

Least squares.

 Foundational problem in statistic and numerical analysis.

 Given n points in the plane: (x1, y1), (x2, y2) , . . . , (xn, yn).

 Find a line y = ax + b that minimizes the sum of the squared error:

Solution. Calculus  min error is achieved when



SSE  (yi  axi b)2

i1

n





a 
n xi yi  (xi)i (yi)ii

n xi
2
 (xi)

2

ii
, b 

yi  a xiii

n

x

y

18

Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

 x1 < x2 < ... < xn, find a sequence of lines that minimizes f(x).

Q. What's a reasonable choice for f(x) to balance accuracy and

parsimony?

x

y

goodness of fit

number of lines

19

Segmented Least Squares

Segmented least squares.

 Points lie roughly on a sequence of several line segments.

 Given n points in the plane (x1, y1), (x2, y2) , . . . , (xn, yn) with

 x1 < x2 < ... < xn, find a sequence of lines that minimizes:

– the sum of the sums of the squared errors E in each segment

– the number of lines L

 Tradeoff function: E + c L, for some constant c > 0.

x

y

20

Dynamic Programming: Multiway Choice

Notation.

 OPT(j) = minimum cost for points p1, . . . , pj.

 e(i, j) = minimum sum of squares for points pi, pi+1 , . . . , pj.

To compute OPT(j):

 Last segment uses points pi, pi+1 , . . . , pj for some i.

 Cost = e(i, j) + c + OPT(i-1).



OPT (j) 
0 if j 0

min
1 i  j

e(i, j)  c  OPT (i 1)  otherwise







21

Segmented Least Squares: Algorithm

Running time. O(n3).

 Bottleneck = computing e(i, j) for O(n2) pairs, O(n) per pair using

previous formula.

INPUT: n, p1,…,pN , c

Segmented-Least-Squares() {

M[0] = 0

for j = 1 to n

for i = 1 to j

compute the least square error eij for

the segment pi,…, pj

for j = 1 to n

M[j] = min 1  i  j (eij + c + M[i-1])

return M[n]

}

can be improved to O(n2) by pre-computing various statistics

