
24.05.2017 Kapitel 3 1

Kapitel 3: Dynamic Programming

Inhalt:

• Weighted Interval Scheduling

• Segmented Least Squares

• Knapsack Problem

• Sequence Alignment

2

Knapsack Problem

Knapsack problem.

 Given n objects and a "knapsack."

 Item i weights wi > 0 kilograms and has value vi > 0.

 Knapsack has capacity of W kilograms.

 Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

Greedy: repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35  greedy not optimal.

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2
W = 11

3

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, …, i.

 Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 }

 Case 2: OPT selects item i.

– accepting item i does not immediately imply that we will have to

reject other items

– without knowing what other items were selected before i, we don't

even know if we have enough room for i

Conclusion. Need more sub-problems!

4

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1: OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w

 Case 2: OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit



OPT (i, w) 

0 if i  0

OPT (i 1, w) if wi  w

max OPT (i 1, w), vi  OPT (i 1, wwi)  otherwise









5

Input: n, W, w1,…,wn, v1,…,vn

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi]}

return M[n, W]

Knapsack. Fill up an n-by-W array.

Knapsack Problem: Bottom-Up

6

Knapsack Algorithm

n + 1

1

Value

18

22

28

1

Weight

5

6

6 2

7

Item

1

3

4

5

2



{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

35

11

0

7

25

40

1

40

W + 1

W = 11

OPT: { 4, 3 }
value = 22 + 18 = 40

7

Knapsack Problem: Running Time

Running time. (n W).

 Not polynomial in input size!

 "Pseudo-polynomial."

 Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm

that produces a feasible solution that has value within 0.01% of

optimum.

24.05.2017 Kapitel 3 8

Kapitel 3: Dynamic Programming

Inhalt:

• Weighted Interval Scheduling

• Segmented Least Squares

• Knapsack Problem

• Sequence Alignment

9

String Similarity

How similar are two strings?

 ocurrance

 occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

10

Applications.

 Basis for Unix diff.

 Speech recognition.

 Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

 Gap penalty ; mismatch penalty pq.

 Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance

11

Goal: Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find

alignment of minimum cost.

Def. An alignment M is a set of ordered pairs xi-yj such that each item

occurs in at most one pair and no crossings.

Def. The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment



cost(M)  xi y j

(xi, y j)  M



mismatch

 
i : xi unmatched

  
j : y j unmatched



gap

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6

12

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1: OPT matches xi-yj.

– pay cost for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a: OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b: OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1



OPT (i, j)














j if i  0

min

xi y j
OPT (i1, j1)

 OPT (i1, j)

 OPT (i, j1)









otherwise

i if j 0

13

Sequence Alignment: Algorithm

Analysis. (mn) time and space.

English words or sentences: m, n  10.

Computational biology: m = n = 100,000. 10 billions ops OK, but 10 GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for j = 0 to m

M[0, j] = j

for i = 0 to n

M[i, 0] = i

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}

14

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •).

 No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and

O(mn) time.

 Clever combination of divide-and-conquer and dynamic programming.

 Inspired by idea of Savitch from complexity theory.

15

Edit distance graph.

 Let f(i, j) be shortest path from (0,0) to (i, j).

 Observation: f(i, j) = OPT(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xiy j

16

Edit distance graph.

 Let f(i, j) be shortest path from (0,0) to (i, j).

 Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

17

Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute by reversing the edge orientations and inverting the

roles of (0, 0) and (m, n)

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0







xiy j

18

Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j

19

Observation 1. The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

20

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2).

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment: Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q

21

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

 Align xq and yn/2.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n

22

Theorem. Let T(m, n) = max running time of algorithm on strings of

length at most m and n. T(m, n) = O(mn log n).

Remark. Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis Warmup



T(m, n)  2T(m, n /2)  O(mn)  T(m, n)  O(mn logn)

23

Theorem. Let T(m, n) = max running time of algorithm on strings of

length m and n. T(m, n) = O(mn).

Pf. (by induction on n • m)

 O(mn) time to compute f(•, n/2) and g (•, n/2) and find index q.

 T(q, n/2) + T(m - q, n/2) time for two recursive calls.

 Choose constant c so that:

 Base cases: m = 2 or n = 2.

 Inductive hypothesis: T(m’, n’)  2cm’n’.

Sequence Alignment: Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(











T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn  T(q, n /2)  T(m q, n /2)

24

Dynamic Programming Summary

Recipe.

 Characterize structure of problem.

 Recursively define value of optimal solution.

 Compute value of optimal solution.

 Construct optimal solution from computed information.

Dynamic programming techniques.

 Binary choice: weighted interval scheduling.

 Multi-way choice: segmented least squares.

 Adding a new variable: knapsack.

 Dynamic programming over intervals: RNA secondary structure.

Top-down vs. bottom-up: different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure

24.05.2017 Kapitel 3 25

Fragen?

