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Knapsack Problem

Knapsack problem.

 Given n objects and a "knapsack."

 Item i weights wi  > 0 kilograms and has value vi > 0.

 Knapsack has capacity of W kilograms.

 Goal:  fill knapsack so as to maximize total value.

Ex:  { 3, 4 } has value 40.

Greedy:  repeatedly add item with maximum ratio vi / wi.

Ex: { 5, 2, 1 } achieves only value = 35   greedy not optimal.
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Dynamic Programming:  False Start

Def.  OPT(i) = max profit subset of items 1, …, i.

 Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } 

 Case 2:  OPT selects item i.

– accepting item i does not immediately imply that we will have to 

reject other items

– without knowing what other items were selected before i, we don't 

even know if we have enough room for i

Conclusion.  Need more sub-problems!



4

Dynamic Programming:  Adding a New Variable

Def.  OPT(i, w) = max profit subset of items 1, …, i with weight limit w.

 Case 1:  OPT does not select item i.

– OPT selects best of { 1, 2, …, i-1 } using weight limit w 

 Case 2:  OPT selects item i.

– new weight limit = w – wi

– OPT selects best of { 1, 2, …, i–1 } using this new weight limit

  



OPT (i, w) 

0 if  i  0

OPT (i 1, w) if  wi  w

max OPT (i 1, w), vi  OPT (i 1, wwi )  otherwise








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Input: n, W, w1,…,wn, v1,…,vn

for w = 0 to W

M[0, w] = 0

for i = 1 to n

for w = 1 to W

if (wi > w)

M[i, w] = M[i-1, w]

else

M[i, w] = max {M[i-1, w], vi + M[i-1, w-wi ]}

return M[n, W]

Knapsack.  Fill up an n-by-W array.

Knapsack Problem:  Bottom-Up
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Knapsack Algorithm

n + 1
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0
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OPT:  { 4, 3 }
value = 22 + 18 = 40
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Knapsack Problem:  Running Time

Running time.  (n W).

 Not polynomial in input size!

 "Pseudo-polynomial."

 Decision version of Knapsack is NP-complete. 

Knapsack approximation algorithm.  There exists a polynomial algorithm 

that produces a feasible solution that has value within 0.01% of 

optimum. 
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String Similarity

How similar are two strings?

 ocurrance

 occurrence

o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps
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Applications.

 Basis for Unix diff.

 Speech recognition.

 Computational biology.

Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]

 Gap penalty ; mismatch penalty pq.

 Cost = sum of gap and mismatch penalties.

2 + CA

C G A C C T A C C T

C T G A C T A C A T

T G A C C T A C C T

C T G A C T A C A T

-T

C

C

C

TC + GT + AG+ 2CA

-

Edit Distance



11

Goal:  Given two strings X = x1 x2 . . . xm and Y = y1 y2 . . . yn find 

alignment of minimum cost.

Def.  An alignment M is a set of ordered pairs xi-yj such that each item 

occurs in at most one pair and no crossings.

Def.  The pair xi-yj and xi'-yj' cross if i < i', but j > j'.

Ex: CTACCG vs. TACATG.

Sol: M = x2-y1, x3-y2, x4-y3, x5-y4, x6-y6.

Sequence Alignment

  



cost( M )  xi y j

(xi, y j )  M



mismatch

 
i : xi unmatched

  
j : y j unmatched



gap

C T A C C -

T A C A T-

G

G

y1 y2 y3 y4 y5 y6

x2 x3 x4 x5x1 x6
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Sequence Alignment:  Problem Structure

Def.  OPT(i, j) = min cost of aligning strings x1 x2 . . . xi and y1 y2 . . . yj.

 Case 1:  OPT matches xi-yj.

– pay cost for xi-yj + min cost of aligning two strings

x1 x2 . . . xi-1 and y1 y2 . . . yj-1

 Case 2a:  OPT leaves xi unmatched.

– pay gap for xi and min cost of aligning x1 x2 . . . xi-1 and y1 y2 . . . yj

 Case 2b:  OPT leaves yj unmatched.

– pay gap for yj and min cost of aligning x1 x2 . . . xi and y1 y2 . . . yj-1

  



OPT (i, j)














j if  i  0

min  

xi y j
OPT (i1, j1)

 OPT (i1, j)

 OPT (i, j1)









otherwise

i if  j 0
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Sequence Alignment:  Algorithm

Analysis.  (mn) time and space.

English words or sentences:  m, n   10.

Computational biology:  m = n = 100,000. 10 billions ops OK, but 10 GB array?

Sequence-Alignment(m, n, x1x2...xm, y1y2...yn, , ) {

for j = 0 to m

M[0, j] = j

for i = 0 to n

M[i, 0] = i

for i = 1 to m

for j = 1 to n

M[i, j] = min([xi, yj] + M[i-1, j-1],

 + M[i-1, j],

 + M[i, j-1])

return M[m, n]

}
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Sequence Alignment:  Linear Space

Q.  Can we avoid using quadratic space?

Easy.  Optimal value in O(m + n) space and O(mn) time.

 Compute OPT(i, •) from OPT(i-1, •).

 No longer a simple way to recover alignment itself.

Theorem.  [Hirschberg 1975] Optimal alignment in O(m + n) space and 

O(mn) time.

 Clever combination of divide-and-conquer and dynamic programming.

 Inspired by idea of Savitch from complexity theory.
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Edit distance graph.

 Let f(i, j) be shortest path from (0,0) to (i, j).

 Observation:  f(i, j) = OPT(i, j).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  



xiy j
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Edit distance graph.

 Let f(i, j) be shortest path from (0,0) to (i, j).

 Can compute f (•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute by reversing the edge orientations and inverting the 

roles of (0, 0) and (m, n)

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0





  



xiy j
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Edit distance graph.

 Let g(i, j) be shortest path from (i, j) to (m, n).

 Can compute g(•, j) for any j in O(mn) time and O(m + n) space.

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

j
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Observation 1.  The cost of the shortest path that uses (i, j) is

f(i, j) + g(i, j). 

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0
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Observation 2.  let q be an index that minimizes f(q, n/2) + g(q, n/2). 

Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Sequence Alignment:  Linear Space

i-j

m-n

x1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

n / 2

q



21

Divide:  find index q that minimizes f(q, n/2) + g(q, n/2) using DP.

 Align xq and yn/2.

Conquer:  recursively compute optimal alignment in each piece.

Sequence Alignment:  Linear Space

i-jx1

x2

y1

x3

y2 y3 y4 y5 y6





0-0

q

n / 2

m-n
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length at most m and n. T(m, n) = O(mn log n).

Remark.  Analysis is not tight because two sub-problems are of size

(q, n/2) and (m - q, n/2).  In next slide, we save log n factor.

Sequence Alignment:  Running Time Analysis Warmup



T(m, n)    2T(m, n /2)    O(mn)      T(m, n)    O(mn logn)
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Theorem.  Let T(m, n) = max running time of algorithm on strings of 

length m and n. T(m, n) = O(mn).

Pf.  (by induction on n • m)

 O(mn) time to compute f( •, n/2) and g ( •, n/2) and find index q.

 T(q, n/2) + T(m - q, n/2) time for two recursive calls. 

 Choose constant c so that:

 Base cases: m = 2 or n = 2. 

 Inductive hypothesis:  T(m’, n’)  2cm’n’.

Sequence Alignment:  Running Time Analysis

cmn

cmncqncmncqn

cmnnqmccqn

cmnnqmTnqTnmT

2

2/)(22/2

)2/,()2/,(),(









  



T(m, 2)  cm

T(2, n)  cn

T(m, n)  cmn  T(q, n /2)  T(m q, n /2)
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Dynamic Programming Summary

Recipe.

 Characterize structure of problem.

 Recursively define value of optimal solution.

 Compute value of optimal solution.

 Construct optimal solution from computed information.

Dynamic programming techniques.

 Binary choice:  weighted interval scheduling.

 Multi-way choice:  segmented least squares.

 Adding a new variable:  knapsack.

 Dynamic programming over intervals:  RNA secondary structure.

Top-down vs. bottom-up:  different people have different intuitions.

Viterbi algorithm for HMM also uses
DP to optimize a maximum likelihood
tradeoff between parsimony and accuracy

CKY parsing algorithm for context-free
grammar has similar structure
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Fragen?


