Kapitel 3: Dynamic Programming

Inhalt:

* Weighted Interval Scheduling
« Segmented Least Squares

« Knapsack Problem

« Sequence Alignment

24.05.2017 Kapitel 3

Knapsack Problem

Knapsack problem.
. Given nobjects and a "knapsack."
. Item i weights w; > O kilograms and has value v; > O.
. Knapsack has capacity of W kilograms.
. Goal: fill knapsack so as to maximize total value.

Ex: (3,4 hs value 40.

1 1 1
W= 11 2 6 2
3 18 5
4 22 6
5 28 7

Greedy: repeatedly add item with maximum ratio v; / w;.
Ex: {5, 2,1} achieves only value = 35 = greedy not optimal.

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

. Case 1. OPT does not select item i.
- OPT selects bestof {1, 2, ..., i-1}

. Case 2: OPT selects item i.
- accepting item i does not immediately imply that we will have to
reject other items
- without knowing what other items were selected before i, we don't
even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

. Case 1: OPT does not select item i.
- OPT selects best of { 1, 2, ..., i-1 } using weight limit w

. Case 2: OPT selects item .
- new weight limit = w - w;
- OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

0 if i=0
OPT (i,w)=9OPT (i—1, w) if w,>w
imax { OPT(i—1,w), v;+ OPT(i—1,w—w;)} otherwise

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

¢
{1}
{12}
{1,2,3}
{1,2,3,4}
{1,2,3,4,5)

Knapsack Algorithm

0
o
o
o
o)
o)
o)

0
1
1
1
1
1

o O O O
N N N N -

OPT: {4,63}
value = 22 + 18 = 40

1
7
7
7
7

W+1

1 1

7 7
Bl s

w=11

1
7

1
7

1
7

24 25 25
18 22 24 28 29
18 22 28 29 34

v

112345 67 89 0l
o o o0 o0 o O O o o o

1 1
7 7
25 25

2o 0
s [0

O D W N -

1
6
18
22
28

1

N o 0N

Knapsack Problem: Running Time

Running time. ©(n W).
. Not polynomial in input size!
. "Pseudo-polynomial."
. Decision version of Knapsack is NP-complete.

Knapsack approximation algorithm. There exists a polynomial algorithm
that produces a feasible solution that has value within 0.01% of
optimum.

Kapitel 3: Dynamic Programming

Inhalt:

* Weighted Interval Scheduling
« Segmented Least Squares

« Knapsack Problem

* Seguence Alignment

24.05.2017 Kapitel 3

String Similarity

How similar are two strings?

« Ocurrance

(o

Qo rfllalnclel-
Jc ulllren cl

6 mismatches, 1 gap

» OCcurrence

o

O mismatches, 3 gaps

Edit Distance

Applications.

. Basis for Unix diff.

. Speech recognition.

. Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
- Gap penalty 5; mismatch penalty o,
. Cost = sum of gap and mismatch penalties.

CEEEECTACET .CTGACCTACET
CCTACT CCTGAC.TACT

Ot + OlgT+ Qag* 20ica 23+ Ocp

10

Sequence Alignment

Goal: Given two strings X = x; X, ... X, and Y =y;y, ...y, find
alignment of minimum cost.

Def. Analignment M is a set of ordered pairs x;-y; such that each item
occurs in at most one pair and no crossings.

Def. The pair x;-y; and x;-y; cross if i<i’, but j>j'.

cost(M) = Zaxiyj + > o+ D> 6

(X, Y)) € M i :X; unmatched j:y; unmatched
misr;lfatch g;p
X1 Xz X3 X4 X X6
Ex: CTACCG vS. TACATG. Sl A]E . -
Sol: M = X,-y1, X3-Y2, X47Y3, X5-Y4, X6~Ye- . T

Yi Y2 Y3 Y4 Y5 Ys

1

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings x; x, ... x;and y; y, .. .Y;.

. Case 1. OPT matches x;-y;.

- pay cost for x;-y; + min cost of aligning two strings

X1 Xz ... Xipandyyys ... Y

. Case 2a: OPT leaves x; unmatched.

- pay gap for x; and min cost of aligning x; X, ... x;yandy; y, . . . y;
. Case 2b: OPT leaves y; unmatched.

- pay gap for y; and min cost of aligning x; x, ... x;and y1 y, . .. Y1

jo if i=0
axiyj+OPT(i—1, j-1)
OPT(i, J)=y min § 6+OPT(i—-1, j) otherwise
o+O0OPT(, j-1)

i5 if j=0

Sequence Alignment: Algorithm

Analysis. ®(mn) fime and space.
English words or sentences: m, n <10.
Computational biology: m = n=100,000. 10 billions ops OK, but 10 GB array?

13

Sequence Alignment: Linear Space

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.
. Compute OPT(i, *) from OPT(i-1, *).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and
O(mn) time.

. Clever combination of divide-and-conquer and dynamic programming.

. Inspired by idea of Savitch from complexity theory.

14

Sequence Alignment: Linear Space

Edit distance graph.
. Lef f(i, j) be shortest path from (0,0) to (i, j).
. Observation: f(i, j) = OPT(, j).

15

Sequence Alignment: Linear Space

Edit distance graph.
. Lef f(i, j) be shortest path from (0,0) to (i, j).
. Can compute f (-, j) for any j in O(mn) time and O(m + n) space.

€ Y1 Y2 Y3 Y4 Y5 Yo

16

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute by reversing the edge orientations and inverting the
roles of (0, 0) and (m, n)

B

17

Sequence Alignment: Linear Space

Edit distance graph.
. Let g(i, j) be shortest path from (i, j) to (m, n).
. Can compute g(*, j) for any j in O(mn) time and O(m + n) space.

18

Sequence Alignment: Linear Space

Observation 1. The cost of the shortest path that uses (i, j) is
f(i, §) +9(i, j).

€ Y1 Y2 Y3 Ya Y5

Yo

19

Sequence Alignment: Linear Space

Observation 2. let g be an index that minimizes f(q, n/2) + g(q, n/2).
Then, the shortest path from (O, O) to (m, n) uses (g, n/2).

n/?2

€ Y1 Y2 Y3 Ya Y5 Yo

20

Sequence Alignment: Linear Space

Divide: find index q that minimizes f(q, n/2) + g(q, n/2) using DP.
. Align x, and y,,.

Conquer: recursively compute optimal alignment in each piece.

n/?2

21

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of
length at most m and n. T(m, n) = O(mn log n).

T(m,n) < 2T(m, n/2) + O(mn) = T(m,n) = O(mnlogn)

Remark. Analysis is not tight because two sub-problems are of size
(g, n/2) and (m - g, n/2). In next slide, we save log n factor.

22

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of
length m and n. T(m, n) = O(mn).

Pf. (by induction on n + m)
. O(mn) time to compute f(+, n/2)and g (+, n/2) and find index q.
. T(q,n/2) + T(m - q, n/2) time for two recursive calls.
. Choose constant ¢ so that:

T(m, 2) < cm
T(2, n) < ¢n
T(m,n) < cmn+T(g, n/2)+T(m—-q, n/2)

. Basecases:m=2o0rn=2.
. Inductive hypothesis: T(m', n') < 2cm'n’.

T(m,n) T(q,n/2)+T(m-q,n/2)+cmn
2cgn/2+2c(m—qg)n/2+cmn
cqn +cmn —cgn +cmn

2cmn

IA A

23

Dynamic Programming Summary

Recipe.
. Characterize structure of problem.
. Recursively define value of optimal solution.
. Compute value of optimal solution.
. Construct optimal solution from computed information.

Dynamic programming techniques.
. Binary choice: weighted interval scheduling.
. . Viterbi algorithm for HMM also uses
. Multi-way choice: segmented least squares. «—— DP o optimize a maximum likelihood
)] tradeoff between parsimony and accuracy
. Adding a new variable: knapsack.
. Dynamic programming over intervals: RNA secondary structure.

CKY parsing algorithm for context-free
grammar has similar structure

Top-down vs. bottom-up: different people have different intuitions.

24

24.05.2017

Fragen?

Kapitel 3

25

