Randomized Algorithms SS 2018

Homework Assignment 3

Problem 9:

Prove Theorem 3.10.

Problem 10:

Consider the situation that we have n processes, where process i initially stores some number $x_i \in \mathbb{N}$. The goal for the n processes is to compute the minimum of these numbers. In order to do so, they execute the following algorithm in synchronized rounds:

In each round, each process i contacts a process j uniformly and independently at random and requests the number x_j currently stored in j. It then sets $x_i := \min\{x_i, x_j\}$.

Our goal is to prove that at most $O(\log n)$ rounds are needed till all processes know the minimum. For that we separate the analysis into three stages, where the following needs to be shown:

- (a) With probability at least 1 1/n, after $O(\log n)$ rounds at least $c \log n$ many processes will know the minimum (where c is a sufficiently large constant so that (b) works).
- (b) If at the beginning of a round, k many processes know the minimum, where $c \log n \le k \le n/2$, then with probability at least 1 1/n at least (5/4)k processes will know the minimum at the end of the round.
- (c) If at the beginning of a round, k many processes do not know the minimum yet, where $k \leq n/2$, then with probability at least 1 1/n at most (3/4)k processes will not know the minimum yet at the end of the round.

Hint: properly define binary random variables and use the Chernoff bounds in each stage.

Problem 11:

Consider the following online job scheduling problem: The input sequence σ consists of a sequence of jobs J_1, \ldots, J_n , where each J_i requires some time $t_i \in \mathbb{N}$ to be processed. The task of the online algorithm is to assign each job to one of m machines, M_1, \ldots, M_m , so that the makespan is minimized, where the makespan is the maximum over all machines of the total time needed by a machine to process the jobs assigned to it.

Suppose we use the simple online algorithm RANDOM: for each job J_i , choose a machine uniformly and independently at random.

(a) Determine the expected total time needed by a specific machine M_i to process the jobs assigned to it.

- (b) Determine the variance of the total time needed by a specific machine M_i to process the jobs assigned to it.
- (c) Find an upper bound on the expected makespan of algorithm RANDOM (recall that the makespan is the maximum total runtime assigned to a machine). For that, try to apply either Chebychev's inequality or the Chernoff bounds to bound the deviation from the expected total runtime for a single machine, and conclude from that on the makespan. (For the Chernoff bounds, you may assume that it also holds if the variables X_i satisfy $X_i \in [0,1]$ instead of $X_i \in \{0,1\}$. For that to hold, one may have to renormalize the X_i 's if, for example, X_i is defined as $X_i \in \{0,t_i\}$.)