Randomized Algorithms

SS 2018

Homework Assignment 6

Problem 17:

Let G = (V, E) be a graph with vertex set $V = \{v_1, \ldots, v_n\}$. A vertex cover of G is a set $C \subseteq V$ with the property that for every edge $\{v_i, v_j\} \in E$, either v_i or v_j is in C. In the VERTEXCOVER problem the task is to find the smallest possible vertex cover.

(a) Show that the following IP is an arithmetization of VC (i.e., there are transformations that transform a feasible solution of one problem formulation into a feasible solution of the other while maintaining the objective value):

Integer program for VC:

$$\begin{array}{ll} \text{minimize} & \sum_{i=1}^n x_i \\ \text{subject to} & x_i + x_j \geq 1 \qquad \text{for all } \{v_i, v_j\} \in E \\ & x_i \in \{0, 1\} \qquad \text{for all } v_i \in V \end{array}$$

(b) Show that a deterministic rounding of the optimal solution of the linear relaxation of this IP according to the rule "if $x_i \ge 1/2$, then add v_i to C" results in a feasible solution.

Problem 18:

MAX2SAT is the restriction of the MAXSAT problem to Boolean formulas in CNF that have clauses with at most 2 literals. The decision variant of the MAX2SAT problem is known to be NP-hard. Consider the following arithmetization of MAX2SAT.

For each Boolean variable x_i we define a variable y_i that can take the value -1 or +1. In addition to that we have a variable $y_0 \in \{-1, +1\}$ with the meaning that x_i is True if and only if y_i and y_0 have the same value.

For the arithmetization of a clause C with one literal, we distinguish between two cases:

- $C = x_i$: use $(1 + y_i \cdot y_0)/2$
- $C = \bar{x}_i$: use $(1 y_i \cdot y_0)/2$

For clauses with two literals we can specify similar formulas.

1. Propose an arithmetization for all 4 possibilities for a clause with 2 literals.

- 2. Formulate a quadratic program for Max2SAT with the help of these arithmetizations.
- 3. Formulate a semidefinite program as a relaxation of the quadratic program.
- 4. Propose an approximation algorithm for Max2SAT. Do you have an idea how to show that its approximation ratio is at most 1.139?