
7 Lowdimensional Optimization
This chapter presents a general technique for solving linear optimization problems with d variables and n constraints with

O(d2n+ eO(
√
d log d))

arithmetic operations on expectation. This bound is based on two algorithms by Clarkson [1] and a subexponential algo-
rithm by Kalai and by Matousek, Sharir, and Welzl [3]. On top of that, we will also consider LP-type problems and abstract
optimization problems (such as the polytope distance and smallest enclosing circle) that can be solved with the techniques
presented in this chapter. We will start with some basic definitions.

7.1 Definitions
We consider minimization problems with a set S = {x ∈ Rd

+ | Ax ≤ b} of feasible solutions with A ∈ R(n,d) and b ∈ Rn

and objective function f(x) = cTx with c > 0, i.e. all coefficients in c are positive. The conditions x ≥ 0 and c > 0
simplify our presentation since in this case there is always a bounded (or no) solution. But they can also be avoided by
appropriate extensions of the algorithms. A vector v = (v1, . . . , vd) is the lexicographically smallest in a set M , if for all
other vectors w = (w1, . . . , wd) ∈M there exists an i ∈ {1, . . . , d} with vj = wj for all j < i and vi < wi.

LetH be the set of the n half spaces that are defined by the constraintsAx ≤ b and letH+ be the set of the d half spaces
that are defined by the constraint x ≥ 0. For G ⊆ H ∪H+ let vG be the lexicographically smallest point x in the polytope
PG :=

⋂
h∈G h (i.e. the result of the intersection of the half spaces in G) that minimizes f(x). The condition of working

with lexicographically smallest vectors is analogous to the technique in the simplex methods for resolving degenerated
cases so that the simplex method is guaranteed to terminate. If PG 6= ∅ and H+ ⊆ G, then due to c > 0 there always exists
such a vG. If PG is the empty set, then we define vG := ∞d, which represents infeasibility. If the solution is unbounded,
then we define vG := −∞d. We write vF < vG if f(vF) < f(vG) or if f(vF) = f(vG) and vF is lexicographically
smaller than vG. For an arbitrary set of constraints H we define v+H = vH∪H+

.
A set of constraints (half spaces) B ⊆ G is called a basis of G if vB is finite and vB′ < vB for every proper subset B′

of B. For instance, H+ is a basis of H ∪H+ since vH+ = (0, 0, . . . , 0)T and the deletion of one of the constraints from
H+ would cause one coordinate to go to −∞. Since (0, 0, . . . , 0)T may not necessarily satisfy the constraints in H ∪H+,
the optimal solution vB of a basis B may be infeasible for G, i.e., it may lie outside of the polytope PG of G. A constraint
h ∈ H ∪H+ is violated by G iff vG < vG∪{h}. The uniqueness of vG implies that in this case vG 6∈ h (if vG is finite). h
is extreme in G if vG−{h} < vG, i.e., if h is violated by G− {h}.

With this terminology we can formulate the following lemma. Items (1) and (2) are obvious and item (3) is standard in
the theory of linear optimization.

Lemma 7.1

(1) For each F ⊆ G ⊆ H ∪H+ it holds vF ≤ vG.

(2) If vF and vG are finite with vF = vG, then h is violated by F iff h is violated by G.

(3) If vG is finite, then each basis of G has exactly d constraints and G has at most d extreme constraints.

7.2 A subexponential algorithm
First, we present a subexponential method called SUBEX lp in order to search for an optimal solution of a linear optimiza-
tion problem. SUBEX lp receives as input a set G of m constraints and a basis B ⊆ G of G and returns a tuple (v,B′)
with v = vG and a basis B′ ⊆ G such that vB′ = v. Thus, in order to obtain an optimal solution for H ∪ H+ we call
SUBEX lp(H ∪H+, H+). SUBEX lp uses a function Basis(B, h) which, given a basis B and a half space h that violates
B, constructs a basis B′ ⊆ B ∪ {h} for which B′ does not violate h. I.e., B′ contains h and omits a constraint from B.
Using an appropriate representation of B, this task can be solved with a dual pivot step using O(d2) arithmetic operations.
The violation test vB 6∈ h only needs O(d) arithmetic operations.

A simple inductive proof (which is left as an exercise) shows that the algorithm SUBEX lp always returns the correct
output, if it terminates. Furthermore SUBEX lp always terminates, since in every recursive call either G is shrunk or a
basis B′′ is chosen such that vB′′ > vB . Both G and the number of bases of G are finite such that at some point no further
call of SUBEX lp occurs.

1

Algorithm SUBEX lp(G,B):
if G = B then

return (vB , B)
else

choose a random h ∈ G−B
(v,B′) :=SUBEX lp(G− {h}, B)
if B′ violates h then

return SUBEX lp(G,Basis(B′, h))
else

return (v,B′)

Figure 1: The SUBEX lp algorithm.

In order to determine the expected runtime of SUBEX lp we first consider the probability that a recursive call with
Basis(B′, h) is made. This is only the case if B′ violates h, which means that vG−{h} = vB′ < vB′∪{h} ≤ vG, i.e., an
extreme constraint h is removed from G. By Lemma 7.1 we know that at most d extreme constraints are contained in
G = H ∪H+. If d− j of these constraints are contained in B, then the probability of choosing one out of the remaining j
extreme constraints from G−B at most j/(m− d) with |G| = m.

It remains to show that j quickly converges against 0 in the recursive calls. For this we enumerate the constraints in G
such that

vG−{h1} ≤ vG−{h2} ≤ . . . ≤ vG−{hd−k} < vB ≤ vG−{hd−k+1} ≤ . . . ≤ vG−{hm} ≤ vG
This order is not unique but the parameter k is, which is called the hidden dimension of the pair (G,B).

First, we determine the change in the hidden dimension for the second recursive call SUBEX lp(G,Basis(B′, h)). Note
that for all h ∈ G − B we have vB ≤ vG−{h} since B ⊆ G − {h}, so h1, h2, . . . , dd−k are in B. Also, these must be
extreme since by our assumption above, vG−{hi} < vB ≤ vG for all 1 ≤ i ≤ d−k. Suppose now that an h = hi is chosen
with i > d− k. For the basis B′ computed in the first recursive call, vB′ = vG−{h}. If B′ violates h, i.e., vB′ < vB′∪{h},
then vG−{h} < vG, which means that h is extreme. Since there are only at most k extreme constraints left, and since for
non-extreme h it holds that vG−{h} = vG, it follows from our ordering of the constraints above that the only choices for h
that can cause a second recursive call are hd−k+1, . . . , hd.

Assume now that an extreme hd−k+i with 1 ≤ i ≤ k is chosen, which means that the second recursive call is executed.
Recall that SUBEX lp(G−{hd−k+1}, B) returns a basisB′ with vB′ = vG−{hd−k+i}. LetB′′ =Basis(B′, hd−k+i). Since
B′ violates hd−k+1 and therefore vG−{hd−k+i} = vB′ < vB′′ ,

vG−{h1} ≤ vG−{h2} ≤ . . . ≤ vG−{hd−k+j} < vB′′ ≤ vG−{hd−k+j+1} ≤ . . . ≤ vG−{hm} ≤ vG

for some j ≥ i. Thus, the pair (G,B′′) has a hidden dimension of at most k − i. At latest when the hidden dimension is
0, all extreme half spaces are in B, which means that vB = vG (because none of the h with vB ≤ vG−{h} are violated by
B), so no further recursive calls of Basis(B′, h) will happen.

For the first recursive call SUBEX lp(G−{h}, B) we observe that the hidden dimension is monotonically decreasing,
i.e., if B ⊆ F ⊆ G, then the hidden dimension of (F,B) is not bigger than the hidden dimension of (G,B). This holds
since the constraints h1, h2, . . . , hd−k are contained in B (and thus also in F) and vF−{hi} ≤ vG−{hi} for all i, since
F ⊆ G.

Let b(m, k) be the worst case expected number of calls of Basis(B′, h) in a call of SUBEX lp(G,B) withm constraints
and a hidden dimension of at most k. Then b(d, k) = 0 for all 0 ≤ k ≤ d, and from the discussion above we conclude

b(m, k) ≤ b(m− 1, k) +
1

m− d

min{k,m−d}∑
i=1

(1 + b(m, k − i)) for all m > d.

With some technical effort one can show [2]

1 + b(m, k) ≤ exp

(
2

√
k ln

m− d√
k

+ (ln 3 + 2)
√
k + ln

m− d√
k

)
= eO(

√
k ln(m−d))

2

where ln x = max{lnx, 1}. Each Basis call needs O(d2) arithmetic operations. For each basis B computed in the
algorithm we check (due to the parameter G− {h}) in the recursive call each constraint h at most once for a violation by
B. Thus, the number of violation tests is at most (m − d)b(m, d) with O(d) arithmetic operations in each test. Suppose
we apply SUBEX lp on an LP with c ≥ 0 and constraint set H as described in Figure 2. Then, the following lemma is
obtained.

Lemma 7.2 For n = |H| the algorithm SUBEX lp(H ∪H+, H+) computes the vector vH∪H+ with an expected number
of O((d2 + nd)eO(

√
d lnn)) arithmetic operations.

As we will see in the following, this bound can be improved.

7.3 Clarkson’s Algorithm 2
The algorithm presented in this section uses a random sample R of 6d2 constraints and computes v+R with the help of
subex lp(R). Then the violated constraints V of H are determined and their probability for being chosen the next time is
increased. This is achieved by assigning to each constraint h ∈ H a multiplicity of µh. Initially µh equals 1, and it is
doubled each time h is violated. The analysis will show that for any basisB ofH the multiplicity ofB increases so quickly
that it is chosen after at most a logarithmic number of iterations. The details of this algorithm can be found in Figure 3.
Here, we consider H(µ) as a multiset where each h ∈ H occurs µh times in H(µ). Let µ(H) =

∑
h∈H µh.

Algorithm subex lp(H):
(v,B) :=SUBEX lp(H ∪H+, H+)
return v

Figure 2: The subexponentiel LP algorithm.

Algorithm Clarkson2(H):
if |H| ≤ 6d2 then

return subex lp(H)
else

r := 6d2

for all h ∈ H do µh := 1
repeat

choose a random multiset R of size r from H(µ)
v :=subex lp(R)
V := {h ∈ H(µ) | v violates h}
if |V | ≤ 1

3d |H(µ)| then
for all h ∈ V do µh := 2µh

until V = ∅
return v

Figure 3: Clarkson’s algorithm 2.

Note that H(µ) is a multiset, so V can be a multiset as well. In order to determine the runtime of Clarkson2 we need a
bound for the expected size of V . We will formulate the lemma in a more general way than necessary since we will need
it again later. In our case we have G = ∅.

Lemma 7.3 Let H be a multiset of m constraints over d variables and let G ⊆ H . For each 1 ≤ r < m the expected size
of VR = {h ∈ H | v+G∪R violates h} with for a random multiset R of size r from H is at most d · m−rr+1 .

3

Proof. Let
(
H
r

)
be the set of all multisets of r elements in H , i.e., all results for R. By definition of the expected value it

holds
E[|VR|] =

1(
m
r

) ∑
R∈(Hr)

|VR|

For R ∈
(
H
r

)
and h ∈ H let XG(R, h) be the indicator variable for the event that v+G∪R violates the constraint h. Then we

have (
m

r

)
E[|VR|] =

∑
R∈(Hr)

|VR| =
∑

R∈(Hr)

∑
h∈H−R

XG(R, h)

(1)
=

∑
Q∈(H

r+1)

∑
h∈Q

XG(Q− h, h)

(2)

≤
∑

Q∈(H
r+1)

d =

(
m

r + 1

)
· d

Here, equation (1) is deduced from the fact that choosing a set R of r constraints from H and subsequently choosing
h ∈ H−R is the same as choosing a set Q of r+1 constraints from H and the subsequent removal of h from Q. Equation
(2) follows from the fact that XG(Q − h, h) is 1 only if vG∪Q∪H+−{h} < vG∪Q∪H+

, i.e., if h is an extreme constraint in
G ∪Q ∪H+, and from the fact that by Lemma 7.1 there are at most d extreme constraints in each multiset of constraints.
Thus,

E[|VR|] ≤ d ·
(

m
r+1

)(
m
r

) ≤ d · m− r
r + 1

ut

For r = 6d2 it holds that d · m−rr+1 ≤ m/(6d). From this lemma and the Markov inequality it follows that the probability
for |V | > 1

3d |H(µ)| in Clarkson2 is at most 1/2 and thus the expected number of loop iterations until a successful iteration
is reached, i.e., |V | ≤ 1

3d |H(µ)|, is at most 2. Furthermore, the following lemma regarding the size of an optimal basis
holds. Recall that |H| = n.

Lemma 7.4 Let k ∈ N and B an arbitrary optimal basis for H ∪H+ (i.e. v+B = v+H). After k · d successful iterations,

2k ≤ µ(B) < n · ek/3.

Proof. Each successful iteration increases the multiplicity of H by a factor of at most (1 + 1/(3d)). Therefore,

µ(B) ≤ µ(H) ≤ n(1 + 1/(3d))k·d < n · ek/3

It remains to determine the upper bound. For each successful iteration with V 6= ∅ it must hold: vR < vH∪H+
= vB .

Thus, at least one constraint in B must be violated. Hence, in k ·d successful iterations a constraint in B is doubled at least
k · d times. Since B contains exactly d constraints, there must exist a constraint in B that is doubled at least k times, i.e.,
µ(B) ≥ 2k. ut

Finally, we need the following statement.

Lemma 7.5 For n = |H| > 6d2 the algorithm Clarkson2 computes the value v+H in expected O(d2n log n) arithmetic
operations and an expected number of at most 6d lnn calls of SUBEX lp with at most 6d2 constraints.

Proof. For k = 3 lnn it holds: 2k = 23(logn)/(log e) = n3/ log e > n2 = n · ek/3. Thus, by Lemma 7.4 there are at most
3d lnn successful iterations and by Lemma 7.3 the expected number of all iterations is at most 6d lnn. In each iteration at
most O(dn) arithmetic operations for the choice of R and the computation of V are needed and SUBEX lp is called once.

ut

Thus, we obtain the following theorem.

4

Theorem 7.6 For n = |H|, Clarkson2(H) computes vH∪H+
with an expected number O(d2n log n+ eO(

√
d ln d) log n) of

arithmetic operations.

But this is not the best we can do. A further improvement is achieved by the algorithm presented in the next section.

7.4 Clarkson’s Algrithm 1
In Clarkson’s algorithm 1, for a set H of n constraints we choose a random multiset R of size d

√
n, compute v = v+R , and

determine the set V of constraints in H that are violated by v. If |V | ≤ 2
√
n then we add V to an initially empty set G,

choose a further random set R, compute v+G∪R, add the violated constraints to G, and so on, until there is no more violated
constraints and we can therefore determine a solution. Details of this method can be found in Figure 4.

Algorithm Clarkson1(H):
if |H| ≤ 9d2 then

return Clarkson2(H)
else

r := bd
√
nc; G := ∅

repeat
choose a random set R of size r from H
v :=Clarkson2(G ∪R)
V := {h ∈ H | v violates h}
if |V | ≤ 2

√
n then G := G ∪ V

until V = ∅
return v

Figure 4: Clarkson’s Algorithm 1.

Lemma 7.3 implies that for r = bd
√
nc it holds: E[|V |] ≤ d · n−rr+1 ≤

√
n. By the Markov inequality the probability

for |V | > 2
√
n is at most 1/2 and thus the expected number of loop iterations until |V | ≤ 2

√
n is at most 2. Furthermore,

it holds that if any constraint is violated by v = v+G∪R, then for any optimal basis B of H ∪ H+ (i.e. v+B = v+H) there
must exist a constraint h ∈ B − (G ∪ R ∪ H+) that is violated by v. (If no constraint from B is violated by v, then
v+H = v+B ≤ v

+
G∪R∪B = v+G∪R ≤ v

+
H , and therefore v must be a solution of H .) Since this constraint is added to G, G can

be augmented at most d times. Thus, we get:

Lemma 7.7 For n = |H| > 9d2 the algorithm Clarkson1 computes v+H in an expected number O(d2n) of arithmetic
operations and an expected number of at most 2d calls of Clarkson2 with at most 2d

√
n constraints.

From this lemma and Theorem 7.6 the following theorem is obtained.

Theorem 7.8 For n = |H|, Clarkson1(H) computes the vector vH∪H+ with an expected number ofO(d2n+d4
√
n log n+

eO(
√
d ln d) log n) arithmetic operations.

This implies the following result.

Corollary 7.9 A linear program with a constant number of variables can be solved in linear time in the number of con-
straints.

We remark that for |H| = O(d2) for some constant d we do not need to apply the complex SUBEX lp algorithm to
obtain a linear runtime. In this case it suffices to enumerate all corners of the polytope defined by H (which are at most
2|H|, i.e., a constant number) instead of calling SUBEX lp(H) for |H| = O(d2).

5

7.5 Abstract optimization problems
In this section we will generalize Clarkson’s algorithm to so-called abstract optimization problems. This includes, for
instance, the problem of the smallest enclosing circle, which we already presented in the first chapter.

An abstract optimization problem is a tuple (H, v) where H is a finite set and v : 2H → T is a function that maps
subsets from H to values in an ordered set (T,≤). The set T contains a maximal element∞. We require two axioms:

• Monotonicity: For all F,G with F ⊆ G ⊆ H it holds: v(F) ≤ v(G).

• Locality: For all F,G with F ⊆ G ⊆ H and v(F) = v(G) < ∞ it holds: each h ∈ H with v(G) < v(G ∪ {h})
implies v(F) < v(F ∪ {h}).

Abstract optimization problems that fulfill both axioms are of LP type.
Let v(H) <∞. A minimal subsetB ⊆ H with v(B′) < v(B) for all proper subsetsB′ ofB is called a basis ofH . An

optimal basis is a basis B with v(B) = v(H). The maximum cardinality of a basis is called the combinatorial dimension
of (H, v) and is denoted by dim(H, v). We will consider several examples in order to illustrate these definitions.

Linear optimization

In this case, H is the set of all linear constraints and v(H) denotes the optimum value in the polytope for H with respect
to the given objective function. The monotonicity condition obviously holds in this case. Also the locality condition holds
since if v(G) < v(G ∪ {h}) (i.e., h is violated by vG), then due to F ⊆ G, h is also violated by vF . The combinatorial
dimension is simply the number of variables of the LP.

Smallest enclosing circle

In this case, H is the set of points and v(H) denotes the radius of the smallest enclosing circle for H . The monotonicity
condition can be verified easily. Also the locality condition holds since if the smallest enclosing circle for G and F ⊆ G
are of the same size (and thus they actually are the same circles when lexicographically ordering the solutions) and point
h lies outside of the circle of G, then h must also lie outside of the circle of F . Since in the 2-dimensional case at most 3
points are sufficient for determine the smallest enclosing circle for H , the combinatorial dimension of this problem is 3.
For d dimensions, at most d+ 1 points are sufficient. Thus, the following theorem holds.

Theorem 7.10 The problem of the smallest enclosing circle for n points in a d-dimensional Euclidean space for a constant
d can be solved in time O(n).

Polytope distance

Given two polytopes P and Q which are specified by their corner sets VP and VQ (and are given as the convex hull of
these), compute the points p ∈ P and q ∈ Q with minimum distance, which we denote by dist(Vp, VQ). For this problem,
H = (U, V) for two point sets U and V and G = (U ′, V ′) ⊆ H iff U ′ ⊆ U and V ′ ⊆ V . Furthermore, we define
v(H) = −dist(U, V). Again, the monotonicity condition can easily be verified. Also the locality condition holds since if
the distances for G and F ⊆ G are equal (and thus the witnesses for them in F and G are equal when lexicographically
ordering the solutions according to them) and point h decreases the distance for G, then h must also decrease the distance
for F . (A formal proof is left as an exercise.) In the 2-dimensional case, at most 3 points are sufficient (one point in U and
two points in V which specify an edge of the polytope for V , or the other way round) for computing the minimum distance
between the polytopes specified by U and V . In the d-dimensional case, at most d+1 points are sufficient (one point in U
and d points in V). The combinatorial dimension of this problem is d+ 1. Thus it holds:

Theorem 7.11 The polytope distance problem in the d-dimensional Euclidean space for a constant d can be solved in time
O(n).

7.6 Clarkson’s algorithms for LP type problems
The Clarkson1 algorithm can be generalized to LP type problems as shown in Figure 5.

Here,B is an optimal basis of the problem restricted toG∪R and h is violated byB if v(B) < v(B∪{h}). Lemma 7.3
can be generalized as follows.

6

Algorithm Clarkson1(H):
if |H| ≤ 9 dim(H, v)2 then

return Clarkson2(H)
else

r := bdim(H, v)
√
nc; G := ∅

repeat
choose a random set R of size r from H
B :=Clarkson2(G ∪R)
V := {h ∈ H | B violates h}
if |V | ≤ 2

√
n then G := G ∪ V

until V = ∅
return v(B)

Figure 5: Clarkson’s Algorithm 1.

Lemma 7.12 Let (H, v) be an abstract optimization problem of LP type. Let H ′ be a multiset of H of size m and let
G ⊆ H ′. For each 1 ≤ r < m it holds that the expected size of VQ = {h ∈ H | v+Q violates h} with Q = G ∪ R for a
random multiset R of size r from H ′ is at most dim(H, v) · m−rr+1 .

Algorithm Clarkson2(H):
if |H| ≤ 6 dim(H, v)2 then

return subex lp(H)
else

r := 6 dim(H, v)2

for all h ∈ H do µh := 1
repeat

choose a random multiset R of size r from H(µ)
B :=subex lp(R)
V := {h ∈ H(µ) | B violates h}
if |V | ≤ 1

3 dim(H,v) |H(µ)| then
for all h ∈ V do µh := 2µh

until V = ∅
return B

Figure 6: Clarkson’s Algorithm 2.

The proof is analogous to Lemma 7.3. Also the Clarkson2 algorithm can be modified as shown in Figure 6. Finally, for
the SUBEX lp algorithm there is an abstract formulation as shown in Figure 7.

Therefore, one only has to think about how to implement the basis algorithm and how to check that B violates an
element h. For the smallest enclosing circle example, for Basis(B′, h) a smallest enclosing circle which contains the points
in B′ and h has to be computed, and for the violation test one has to check whether the point h lies outside of the circle
specified by B.

References
[1] K.L. Clarkson. Las Vegas algorithms for linear and integer programming when the dimension is small. Journal of the

ACM, 42:448–499, 1995.

[2] B. Gärtner. Randomized Optimization by simplex-type methods. PhD thesis, Freie Universität Berlin, 1995.

7

Algorithm subex lp(H):
B′ :=SUBEX lp(H,B) for a basis B of H
return B′

Algorithm SUBEX lp(G,B):
if G = B then

return B
else

choose a random h ∈ G−B
B′ :=SUBEX lp(G− {h}, B)
if B′ violates h then

return SUBEX lp(G,Basis(B′, h))
else

return B′

Figure 7: The subexponential LP algorithm.

[3] B. Gärtner und E. Welzl. Linear programming – randomization and abstract frameworks. In Proc. of the Symp. on
Theoretical Aspects of Computer Science (STACS), pages 669–687, 1996.

8

