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Overview

• Model and basic primitives
• Universality
• Relays
• Joining and Leaving
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Process Model
• Processes can connect to each other

• Connections over some shared medium: 
overlay network
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Model and Basic Primitives

A knows (IP address, port address,… of) resp. has access
autorization for B : network can send message from A to B

High-level view: 
A knows B  ⇒ overlay edge (A,B) from A to B    ( A       B )

Set of all overlay edges: overlay network.

A B

Communication network
(Internet, ad-hoc network,…)
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Model and Basic Primitives
• Overlay network established by processes:

• Graph representation:

• Edge  A → B  means: A knows / has access to B

nodes

edges
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Model and Basic Primitives
• Edge set EL: set of pairs (v,w) where v knows w

(explicit edges).

• Edge set EM: set of pairs (v,w) with a message in transit to v
containing a reference to w (implicit edges).

• Graph G=(V,EL∪EM): graph of all explicit and implicit edges.

v w

v w
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Model and Basic Primitives
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

v w
M3 M2 M1

t0:

v w
M2

t1:

v w
M1

t2:

v w
M3

t3:
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Model and Basic Primitives
Fundamental goal: topology of process graph

(i.e., G) is kept weakly connected at any time

Fundamental rule: never just „throw away“ a 
reference!

B

A
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Model and Basic Primitives
Admissible primitives for weak connectivity:
• Introduction:

u introduces w to v by sending a message to v 
containing a reference to w

• special case: u introduces itself to v

u
v

w
u

v

w

u u vv
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Model and Basic Primitives
Admissible primitives for weak connectivity:
• Delegation:

u delegates its reference of w to v (i.e., afterwards it 
does not store a reference of w any more)

• Fusion:

u
v

w
u

v

w

u u vv
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Model and Basic Primitives
Admissible primitives for weak connectivity:
• Reversal:

u sends a reference of itself to v and deletes v´s reference

Remarks:
• Advantage: primitives can be executed in a local, wait-free

manner in arbitrary asynchronous environments
• Introduction, delegation and fusion preserve strong

connectivity

u u vv
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Universality

Theorem 3.1: The 3 primitives below are weakly universal, i.e., 
they can be used to transform any weakly connected graph
G=(V,E) into any strongly connected graph G´=(V,E´).
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Universality

Proof: consists of two parts
1. Using the introduction primitive, one can get from any

weakly connected graph G=(V,E) to the clique. 

u
v

w
u

v

w
introduction:

G clique
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Universality
How does that work?

Consider any two nodes v and w. Since G is weakly
connected, there is a path from v to w.

Exercise: If in each round every node introduces all of its
neighbors and itself to all of its neighbors, then just 
O(log n) rounds are needed till the clique is reached.

v
w
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Universality
Proof: 
2. Using the delegation and fusion primitives, one can get

from the clique to G´=(V,E´). 

u
v

w
u

v

w
delegation:

u u vvfusion:

clique G´
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Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´. 
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a 
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.
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Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´. 
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a 
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.

• Then node u delegates (u,w) to v, i.e., (u,w) is transformed into
(v,w). 
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Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´. 
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a 
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.

• Then node u delegates (u,w) to v, i.e., (u,w) is transformed into
(v,w). 

• After at most n-2 further delegations along p, the edge can be
fused with an edge in G´. Doing that for all (u,w)∉E´, we get G´.
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Universality
Theorem 3.2: The 4 primitives below are universal in a sense 

that one can get from any weakly connected graph G=(V,E) to 
any other weakly connected graph G´=(V,E´).

u
v
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u
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Universality
Theorem 3.2: The 4 primitives below are universal in a sense 
that one can get from any weakly connected graph G=(V,E) to
any other weakly connected graph G´=(V,E´).
Proof:
• Let G´´=(V,E´´) be the bidirected version of G´, i.e., for all 

(u,v)∈E´, (u,v)∈E´´ and (v,u)∈E´´. 
• Certainly, G´´ is strongly connected. (Why?)
• Theorem 3.1: we can get from G to G´´.
• From G´´ to G´: use reversal and fusion primitive to remove

wrong directions:
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Universality
Remark: 
• Each of four primitives is necessary for universality.

– Introduction: only one that generates new edge
– Fusion: only one that removes edge
– Delegation: only one that moves edge away
– Reversal: only one that makes nodes unreachable

• Theorems 3.1 and 3.2 only show that in principle
it is possible to get from any weakly connected graph 
to any other weakly resp. strongly connected graph. 
Designing distributed algorithms for specific topologies
can be very challenging.
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Overview

• Model and basic primitives
• Universality
• Relays
• Joining and Leaving
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Relays
Recall the definition of the introduction primitive:

u introduces w to v by sending a message to v 
containing a reference to w

This violates w´s right to decide who shall connect to it.
(But self-introduction is fine.)

u
v

w
u

v

w
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Relays
Same problem with delegation:

But fusion and reversal are fine:

u
v

w
u

v

w

u u vv
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Relays

How to obtain safe forms of introduction and
delegation?
→Use the concept of relays (      )
Extension of picture with relays:
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Relays

Safe introduction:

Instead of introducing w to v, u can only
introduce its relay to w to v.
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Relays

Safe introduction:

Once the reference of relay r to w is received
by v, it is tied to a new relay r´ at v pointing to r.
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Relays

Safe introduction:

No access rights violated: u could have just 
forwarded anything from v to w by itself.
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Relays

Safe introduction:

Most importantly, if u kills its relay to w, also 
v´s connection to w is gone.
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Relays
Safe introduction:

→ Principle of least exposure: when killing all 
relays with incoming links, no request can
reach a node any more
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Relays
Possible outcome of safe introductions:

Note that only process v will process message from u. The 
relays in between just forward the message.
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Relay Semantics
Processes have access to the following info
about a relay r:
• r.incoming: number of incoming

connections into r
• r.sink: identifier of sink relay of r (needed

for safe form of fusion)
• r.direct∈{true,false}: is true if and only if r

directly connects to its sink (or is a sink)
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Relay Semantics
Commands:
• new Relay: creates new sink relay and

returns reference r to calling process

• u executes r←action(parameters): calls
action(parameters) in the node hosting the
sink relay of r (in example, node v)
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Relay Semantics
Commands:
• r←action(parameters): for any relay r´ in 

parameters, new outgoing relay r´´ is created at 
host of sink relay of r´ (i.e., v) and r´´ passed to v

A node only has access to local relays.
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Relay Semantics
Commands:
• r←action(parameters): for any relay r´ in 

parameters, new outgoing relay r´´ is created at 
host of sink relay of r´ (i.e., v) and r´´ passed to v

• delete r: deletes relay r, which cuts off all relays
behind it, but calls that have already been sent
to/via it are still delivered. Outgoing connection of r
closes once all of these calls have been delivered.
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Relay Semantics
Outcome of deleting relay r:
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u v
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Closes once all calls in 
outgoing queue of r are
delivered, which reduces
r´.incoming by 1.
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Relay Semantics

Remarks:
• Whenever a reference of some relay r is received, a 

local relay r´ is created in the receiving process pointing
to r. This makes sure that processes only have
references to local relays.

• Any relay newly created by a process is a sink relay (see
v), i.e., all messages sent to it will be processed by v and
only by v.
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Relay Semantics
Possible outcome of safe introductions:

In our old graph terminology, this corresponds to the
following connections (though there are now depen-
dencies among them):
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Relays
Relay graph G=(V,EL∪EM):
• V=R∪P, where R is the set of relays and P is the set of processes
• EL (explicit edges): set of edges (v,w) where either (v∈P and w∈R), 

or (v∈R and w∈R), or (v∈R and w∈P)

• EM (implicit edges): set of edges (v,w) where v∈P and w∈R, which
represents a message in transit to v with a reference to relay w
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Relays
A relay graph G=(R∪P,EL∪EM) is called
• weakly connected if for all pairs v,w∈P

there is a path from v to w in G when
ignoring the directions of the edges

• strongly connected if for all pairs v,w∈P
there is a directed path from v to w in G
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Relays
Safe introduction:

u executes: r←introduce(r´)
(introduce: just an example, could be any action)
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Relays
Safe introduction:

Certainly, safe introduction preserves weak (and
strong) connectivity in relay graphs as this only adds
an edge to G.
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Relays
Safe reversal:

Given r has no incoming connections, u executes:  
r←introduce(s); delete r 
Note: r is only closed once s-ref. has reached r´.
SS 2019 Chapter 3 43

u v

…

…

u v

…

r
s s

…r´



Relays
Safe reversal:

Certainly, safe reversal preserves weak
connectivity since the connected components of u
and v stay weakly connected.
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Relays
Safe fusion:

Given r´ has no incoming connections, u executes:
if r.sink=r´.sink then delete r´
Exercise: safe fusion preserves weak and strong 
connectivity.
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Relays
Safe fusion:

Remark: Processes only know whether two references
point to the same relay or not (not to the same 
process). This allows processes to maximize
anonymity since different relays can be used for
different tasks. 
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Relays
Theorem 3.3: Safe introduction, fusion, and reversal are universal in a 
sense that one can get from any weakly connected relay graph
G=(R∪P,E) to any other weakly connected relay graph G´=(R∪P,E´)
(where w.l.o.g. E and E´ consist solely of explicit edges).
Proof:
• For any process v∈P let R(v) be the set of all relays local to v.
• Let G1=(P,E1) be the graph where (w,v)∈E1 if and only if there is an 

edge (r,s)∈E with r∈R(v) and s∈R(w). Define G2=(P,E2) in the same 
way for E´. 

SS 2019 Chapter 3 47

v w

r s
v w



Relays
Theorem 3.3: Safe introduction, fusion, and reversal are universal in a 
sense that one can get from any weakly connected relay graph
G=(R∪P,E) to any other weakly connected relay graph G´=(R∪P,E´)
(where w.l.o.g. E and E´ consist solely of explicit edges).
Proof:
• For any process v∈P let R(v) be the set of all relays local to v.
• Let G1=(P,E1) be the graph where (w,v)∈E1 if and only if there is an 

edge (r,s)∈E with r∈R(v) and s∈R(w). Define G2=(P,E2) in the same 
way for E´. 

First, we show how to emulate the standard introduction and delegation
rules by our safe rules. The remaining proof then proceeds in three
parts:
1. Transform G into G1.
2. Transform G1 into G2.
3. Transform G2 into G´.
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Proof of Theorem 3.3
Emulation of introduction rule (u introduces w to v):

First, u introduces w to its relay to v (using the safe
introduction rule).
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Proof of Theorem 3.3
Emulation of introduction rule (u introduces w to v):

Then w establishes a new relay r, sends its reference via u
to v and drops its relay to u (which resembles the safe
reserval rule).
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Proof of Theorem 3.3
Emulation of delegation rule (u delegates w to v):

First, u introduces w to its relay to v and drops its relay to w
(which resembles the safe reversal rule).
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Proof of Theorem 3.3
Emulation of delegation rule (u delegates w to v):

Then w establishes a new relay r, sends its reference to u
(which will be forwared to v) and drops its relay to u (which
resembles the safe reserval rule).
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Proof of Theorem 3.3
Remark: Since now w is always directly involved whenever
it is introduced or delegated to a node v, w can also ensure
that no corrupted information about it is sent to v. This is 
not guaranteed by the old way introduction and delegation
is handled:

u sends a message to v containing w´s reference.
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Proof of Theorem 3.3
Transforming G into G1:
First, transform any relay tree in the following way starting
with the most distant relays r from s

using safe reserval for any pair (r,s):

SS 2019 Chapter 3 54

r s v

r´ s´

r s r s

r´

r s

r´ s´
… …



Proof of Theorem 3.3
Transforming G into G1:
Then, transform the star back into the original tree, but with
reversed, isolated edges

using the safe rules emulating the standard delegation rule. 
Since at the end just isolated edges are left, we can
simplify that to our standard graph on processes, G1.
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Proof of Theorem 3.3

Transforming G1 into G2:
This follows from Theorem 3.2 since
introduction, delegation, fusion, and reversal
can be emulated by our safe primitives.

SS 2019 Chapter 3 56



Proof of Theorem 3.3
Transforming G2 into G´:
For any relay tree T in G´, transform the individual edges
belonging to it in G2 into that tree starting with the closest
relays to v

by using safe reserval for any pair (r,s):
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Realization of Relays
Embedding into Trusted Communication Environment:

• AL: application layer, manages processes
• TCL: trusted communication layer, manages relays
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TCL Internet
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Why Relays?
Standard assumption for adversarial behavior in 
theory of distributed systems:
• Adversarial nodes do not overwhelm

other nodes with messages.
With relays, this assumption is not needed any more
since adversarial nodes can be isolated.
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Why Relays?
Important access control requirements:

• Integrity: It should not be possible to construct, 
tamper with or steal an access right.

• Propagation: There should be mechanisms
for controlling the transfer of access rights.

• Revocation: It should be possible to revoke an access right.

If relays are managed by reliable and protected TCL, these
requirements can be satisfied.

→ Researchers in distributed computing can now consider
denial-of-service and access control problems
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Why Relays?
When using sink relays as pseudonyms, 
authentication is possible:

If u executes r←buy(x,s), a new relay s´´ in v 
will connect to s, allowing v to check via 
s´.sink=s´´.sink and s´´.direct=true that request
came from u.
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Overview

• Model and basic primitives
• Universality
• Relays
• Joining and Leaving
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Joining an Overlay
Decentralized approach:
• Node v sends (encrypted) access info about r via some

external (potentially insecure) channel (like emails) to w.
• Node w feeds this info into its TCL to connect to r.

Problem: Access info can get stolen (to hijack connection) 
or replaced by other info (for identity theft)
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Safely Joining an Overlay
Supervised approach:
• When TCL is initialized, every node is connected to a 

preset, trusted supervisor.
• Supervisor safely introduces v to w.

Useful for virtual private networks (VPNs)!
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Supervised Overlays
Remarks:
• Advantage: safe joining of overlay
• Supervisor may also be used to transform overlay, i.e., nodes wait

for supervisor commands to change connections.

• Advantage of supervised transformations: supervisor can compute
minimum number of transitions needed to get from Topology 1 to
Topology 2, thereby minimizing the work of the nodes and the
disruptions, topology transformation may cause to the functionality
of the overlay (similar approach in Software Defined Networks!).

• We just recently developed an algorithm for computing near-
minimum number of transformations (submitted to ICALP).
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Supervised Overlays
Remarks:
• Advantage: safe joining of overlay
• Supervisor may also be used to transform overlay, i.e., nodes wait

for supervisor commands to change connections.

• What if supervisor is malicious? It could start Sybil attacks (flooding
an overlay with fake identities) or Eclipse attacks (disconnecting
parts of the overlay)

• Not a problem if supervisor only suggests changes that the nodes
could have done themselves (safe intro, delegation and fusion), 
since these cannot introduce new nodes to the system and these
cannot disconnect nodes from the overlay. 

• Exercise: Why?
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Safely Leaving an Overlay
Safe Departure Problem (SDP): leave overlay without disconnecting it.

Decentralized approach:

Theorem 3.4: The SDP cannot be solved in the standard link model
(without relays).
Proof:
• Suppose there is a distributed protocol P that can solve the SDP 

problem.
• Consider the following initial state S0:
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Safely Leaving an Overlay
Protocol P:

Consider now the following initial state:
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v
: leaving node

: node gone

Eventually, time t reached so that v decides
to leave the network (i.e., v is gone afterwards)

v

S0

St v

Stx v



Safely Leaving an Overlay

Problem: v may still decide to leave the system since it may not 
be aware of the fact that x has a link to v! But if v leaves, then
x is isolated, i.e., Protocol P does not solve the SDP problem.
Contradiction!
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Safely Leaving an Overlay

• This problem will not happen with the relay approach because
v must have given the permission to x to connect to v and
therefore is aware of the link (x,v)!

• In fact, for relays, a distributed protocol is known (presented
by us at SSS 2018) that can solve the SDP problem.
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Safely Leaving an Overlay
Safe Departure Problem (SDP): leave overlay without
disconnecting it.

Basic idea to solve the SDP with relays (that works for isolated
departures):
• Phase 1: v looks for any relay connection to a non-leaving

node and declares it its anchor.
• Phase 2: v safely delegates its connections to its anchor until

it is only connected to its anchor. Once this is completed, v
leaves.
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Safely Leaving an Overlay
Phase 1: v looks for any relay connection to a non-leaving node
and declares it its anchor.
• Node v may pick any outgoing neighbor as its anchor, but to

be on the safe side, it may periodically check (via timeout) 
whether its anchor is still a non-leaving node. It does so by
sending a reference to r with its request so that the anchor
can reply with its state. 

• The anchor immediately closes the link to r after replying (but 
remember that its answer will still be delivered!) so that v just 
has an outgoing but no incoming connection to its anchor.
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Safely Leaving an Overlay
Phase 2: v safely delegates its connections to its anchor
until it is only connected to its anchor. Once this is
completed, v leaves.
Example:
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Safely Leaving an Overlay
Phase 2: v safely delegates its connections to its anchor
until it is only connected to its anchor. Once this is
completed, v leaves.
Example:

SS 2019 Chapter 3 74

anchor

rvw

anchor

rvw

w executes
x←introduce(s)
delete y

s s

x
y



Safely Leaving an Overlay
Safe Departure Problem (SDP): leave overlay without
disconnecting it.

Supervised approach:

This is easy since supervisor knows the connections between
the processes, so it can make the appropriate introductions in 
order to avoid disconnectivity. (Exercise)
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Questions?
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