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Network Flow

Overview:
• Foundations
• Ford-Fulkerson algorithm
• Edmonds-Karp algorithm
• Goldberg‘s algorithm
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Foundations
Definition 1: A flow network (G,s,t,c) consists of a directed graph G=(V,E), a source s 

∈ V, a sink t ∈ V, and a capacity function c:V×V → ℝ≥0, with c(u,v) = 0 if
(u,v) ∉ E.

In the following, we assume that s ↝G u ↝G t for all u ∈ V, where u ↝G v means
that there is a directed path from u to v in G. (Otherwise, we can remove u and all 
of its edges from G, because a flow from s to t cannot be sent via u.)

Definition 2: Let (G,s,t,c) be a flow network. 

a) A network flow in G is a function f:V×V → ℝ with the property that
f(u, v) ≤ c(u, v) for all u, v ∈ V             (capacity constraints)
f(u, v) = - f(v, u) for all u, v ∈ V  (skew symmetry)

Σv∈V  f(u, v) = 0 for all u ∈ V \ {s, t} (flow conservation)

b) The value | f | of a network flow f is defined as
| f | = Σv∈V f (s, v). 
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Foundations
A network flow in G is a function f:V×V → ℝ with the property that

f(u, v) ≤ c(u, v) for all u, v ∈ V             (capacity constraints)
f(u, v) = - f(v, u) for all u, v ∈ V  (skew symmetry)
Σv∈V f(u, v) = 0 for all u ∈ V \ {s, t} (flow conservation)

Remark 3: Let f be a flow in a flow network (G,s,t,c). Then 
a)  f (v, v) = 0 for all v ∈ V (due to skew symmetry).
b)  Σu∈V  f (u, v) = 0 for all v ∈ V \ {s, t} (flow conservation & skew symmetry).
c)  For all u, v ∈ V with (u, v), (v, u) ∉ E  it holds that f (u, v) = f (v, u) = 0. 
d)  For all v∈V \ {s, t},

Σ f (u, v) =  - Σ f (u,v)
u∈V, f(u,v)>0 u∈V, f(u,v)<0

e)  A function f with f (u, v) = 0 for all u, v ∈ V is a valid flow.
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Foundations
Example of a valid flow:

• Only positive flows are shown (negative flows are implied by skew
symmetry).

• For example, f(v,u)=1, so f(u,v)=-1.
• This implies that flow cannot flow at the same time in both directions for a 

pair {u,v}.
• Why is it fine to have that restriction? (Concretely, why can we ignore

instances having positive flows in both directions between u and v without
loss of generality, when just focusing on |f|?)
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Foundations

Remark 4: The outgoing flow of s is equal to the incoming flow at t.
Proof:
• It follows from skew symmetry:

Σv∈V Σw∈V f(v,w)  = Σ{v,w} (f(v,w)+f(w,v)) + Σv∈V f(v,v)  = 0
• Moreover, it follows from flow conservation:

Σv∈V Σw∈V f(v,w) = Σw∈V f(s,w) + Σw∈V f(t,w)
= |f| + Σw∈V f(t,w)

• Hence, due to skew symmetry:
|f| = Σw∈V f(w,t) 
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MAXFLOW Problem: 

Input: a flow network (G,s,t,c). 
Output: a flow f in G with maximum value | f |.

Remark 5: A maxflow problem (G, s1, …, sp, t1, …tq, c) with multiple sources s1, 
…, sp and multiple sinks t1, … tq with the goal to transfer as much flow as 
possible from the sources to the sinks (i.e., find a flow f:V×V → ℝ maximizing
Σi=1

p (Σv∈V f(si,v)) ) can be reduced to the original maxflow problem:

Construct Gˈ = (Vˈ, Eˈ) and cˈ as follows:
Vˈ =  V ∪ {s, t}
Eˈ =  E ∪ {(s, si) | 1 ≤ i ≤ p} ∪ {(ti, t)| 1 ≤ i ≤ q}

cˈ (u, v) =   c (u, v)     u, v ∈ V
∞ u = s  or v = t

Then there is a flow f from s1, …, sp to
t1, …, tq of value ϕ in (G, s1, …, sp, t1, … tq, c) 
if and only if there is a flow fˈ from s to t in
(Gˈ, s, t, cˈ) of value ϕ (see the figure).
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Ford-Fulkerson Algorithm
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How do we solve the maxflow problem?

Definition 6:  Let (G,s,t,c) be a flow network and f be a flow in G.
a) For any u, v ∈ V, the residual capacity cf(u,v) is defined as

cf(u,v) = c (u,v) – f (u,v).

b) The residual network Gf = (V,Ef) is defined as 

Ef = { (u,v) ∈ V×V | cf(u,v) > 0}

c) A simple path P from s to t in Gf is called an augmenting path.
The residual capacity cf (P) of P is defined as

cf(P) = min { cf(u,v) | (u,v)∈P }.
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Flow network:

G
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Are we allowed to add a valid flow in Gf to a flow in G?

Lemma 7: Let (G, s, t, c) be a flow network and f be a flow 
in G. Let Gf be the residual network of G induced by f, 
and let fˈ be a flow in Gf. Then

(f + fˈ)(u, v) = f (u, v) + fˈ (u, v)
is a valid flow in G with value |f + fˈ| = |f| + |fˈ|. 
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Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

FORDFULKERSON (Flow network G = (V, E), s, t, c))
{

for each edge (u, v) ∈ E 
{ f [u, v] := 0; f [v, u] := 0; }                                             // initially empty flow

Gf := residual network of G w.r.t. f;
while (Ǝ a path P from s to t in Gf) // P is an augmenting path 
{ // compute maximal flow along P

cf (P) := min {cf (u, v) | (u, v) ∈ P)}; // cf (u, v) = c (u, v) – f (u, v)
for each edge (u, v) ∈ P // update flow along P

{ f [u, v] := f [u, v] + cf (P); f [v, u] := - f [u, v]; }
Gf := residual network of G w.r.t. f;

}
output f

}
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13
11|14

G

|10

u x

v y

ts

5

4

75
3

5

5

3

Gf

1111

12

4

11

15
8

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13
11|14

G

|10

Flow network: Residual network with augmenting path:

Augmented flow:

27



5/20/2019 Chapter 7

Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Do we always have a maximum flow f if Gf has no more paths from s to t?

Definition 8: Let (G,s,t,c) be a flow network. For some cut (X,Y) of V we define

f (X, Y) = Σ Σ f (x, y),   c(X, Y) = Σ Σ c (x, y)
x∈X y∈Y x∈X y∈Y

Theorem 9: (Max-Flow Min-Cut Theorem)
Let (G,s,t,c) be a flow network and f be a flow in G. Then the following statements
are equivalent.
a)   f is a maximal flow in G.
b) The residual network Gf of G w.r.t. f does not contain any augmenting path. 
c) |f| = c(S, T) for some cut (S, T) of G with s∈S and t∈T.

X Y
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Edmonds-Karp Algorithms
Problem: in the worst case, the Ford-Fulkerson Algorithm is too

slow

In 1972, Edmonds and Karp proposed two heuristics in order to 
compute maximal flows more efficiently.

Heuristic 1: Choose the augmenting path of largest value.
Heuristic 2: Choose the shortest augmenting path.
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Edmonds-Karp Algorithms

Theorem 10: Let (G, s, t, c) be a flow network 
with integer capacities c(u, v). Then heuristic 
1 computes a maximal flow f* in time 

O(|E|2 ⋅ log |E| ⋅ log |f*|). 

Theorem 11: Let (G, s, t, c) be a flow network
with integer capacities c(u, v). Then heuristic 2 
computes a maximal flow in time O(|E|2⋅|V|). 
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Intuition: 

• A flow network can be seen as a network
of liquids: 
edges correspond to pipes and nodes 
correspond to pipe connections.

• Every node has a reservoir that can 
collect an arbitrary amount of liquid.

• Every node, its reservoir, and all of its pipes 
are arranged on a platform whose height may increase during the execution
of the algorithm.

Goldberg´s Algorithm
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Intuition: 

• The node heights determine how the flow is moved through 
the network: flow always flows downhill.

• Initially, the source s pumps as much flow as
possible into the network (= c(s, V – s)). 

• If the flow reaches some intermediate node,
it is collected in its reservoir. From there it will
be sent downhill later.

• If all non-saturated pipes that leave a node
u lead to nodes v that are above u, then the
height of u will be increased, i. e., we lift u. 

• If the total flow that can flow to a sink, reaches it, then the excess flow in the reservoirs 
is sent back to the source by lifting the heights of the intermediate nodes beyond the
height of the source. 

Goldberg´s Algorithm
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Goldberg´s Algorithm
Definition 12: Let (G,s,t,c) be a flow network. A preflow is a function 

f:V×V→ℝ satisfying the following properties:
• f (u, v) ≤ c (u, v) for all u, v ∈ V (capacity constraints)
• f (u, v) = - f (v, u) for all u, v ∈ V (skew symmetry)
• f (V, u) ≥ 0 for all u ∈ V \ {s} (preflow condition)

• The excess flow of a node v is defined as ef(v)=f(V,v). A node v≠t is 
called active if ef(v)>0.

• Goldberg´s Algorithm assigns to each node v a height h(v)∈ℕ0. The 
height function is called legal if h(s)=|V|, h(t)=0, and for all edges 
(v,w) in the residual network Gf, h(v)≤h(w)+1.
(I.e., for all (v,w)∈E with h(v)>h(w)+1, (v,w)∉Ef.)

• An edge (v,w) in Gf is called admissible if h(v)>h(w). 
(Together with the previous condition it follows that h(v)=h(w)+1.)
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Goldberg´s Algorithm
Basic Operations:
• Push(u,v): push as much flow as possible from u to v
• Lift(u): lift u as much as possible without violating the legality of the 

height function.

In pseudocode:

Push(u,v):
δ:=min{ef(u),cf(u,v)}
f(u,v):=f(u,v)+δ
cf(u,v):=cf(u,v)-δ
cf(v,u):=cf(v,u)+δ
ef(u):=ef(u)-δ
ef(v):=ef(v)+δ

Lift(u):
h(u):=min{ h(v)+1 | (u,v)∈Ef }
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Goldberg´s Algorithm
Goldberg´s Algorithm works as follows:

Preflow-Push Algorithm:
for each u∈V\{s} do h(u):=0; ef(u):=0
for each (u,v)∈E do f(u,v):=0; f(v,u):=0
h(s):=|V|
for each (s,u)∈E do

f(s,u):=c(s,u); f(u,s):=-f(s,u); ef(u):=c(s,u)
while (there are active nodes u) do

if (there is an admissible edge (u,v) )
then Push(u,v)
else Lift(u)
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Example:

Capacities are marked in red
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Example:

Nach der Initialisierungsphase:

• s is lifted to height 7.  The heights
of all other nodes are set to 0. 

• Every edge from s is saturated. 
All other edges have a flow of 0. 

No PUSH-operation can currently
be executed. 

Operations that can be executed are 
LIFT(u), LIFT(v) or LIFT(w). 

After initialization:

39



5/20/2019 Chapter 7

Nach der Initialisierungsphase:

The height h(v) is set to
1 + min {h [u] | (v, u) ∈ Ef}
= 1 + 0 = 1.

Now, operations that can be executed
are LIFT(u), LIFT(w) or 
PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, y),
PUSH(v, t). 

Example:

After LIFT(v):
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Nach der Initialisierungsphase:

Operatons that can be executed are
LIFT(u), LIFT(w), LIFT(y) or
PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, t). 

After PUSH(v, y):

Example:

41
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Example:

Nach der Initialisierungsphase:

After LIFT(y):

The height h(y) is set to
1 + min{h[u] | (y, u) ∈ Ef}
= 1 + 0 = 1. 

Operations that can be executed  
are LIFT(u), LIFT(w) or
PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, t),
PUSH(y, t).
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Example:

Nach der Initialisierungsphase:

After PUSH(y, t):

Operations that can be executed
are LIFT(u), LIFT(w) or
PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, t).

The algorithm continues to run
until no PUSH or LIFT operation
can be executed.
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Goldberg´s Algorithm
Theorem 13: Let (G, s, t, c) be any flow network with n nodes
and m edges. Then Goldberg´s Algorithm has a runtime of 
O(n2m).

With an improved selection of Push and Lift Operations, this 
runtime can be improved.

Rules for the choice of active nodes:
• FIFO: The active nodes are organized in a FIFO queue, i.e., 

new active nodes are added to the back of the queue and 
active nodes to be processed are taken from the front. With 
this rule, a runtime of O(n3) can be reached.

• Highest-Label-First: Always take the active node of largest 
height. In this case, one can reach a runtime of O(  m ⋅n2).
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Other Variants
• Goldberg, 1985: FIFO PPA: O(|V|3).
• Goldberg, Tarjan, 1986:

Improved FIFO PPA: O(|V| ⋅ |E| ⋅ log (|V|2 ⋅ |E|)).
• Goldberg, Tarjan, 1986, Cheriyan, Maheshwari 1989:

Highest Label PPA: O(|V|2 ⋅ √|E|). 
• King, Rao, Tarjan, 1994:

O(|V| ⋅ |E| log|E|/(|V| log |V|) |V|).
• Orlin, 2013:

O(|V| ⋅ |E|).
• Randomized Variants 
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History of maximal flow algorithms:

G = (V, E) with |V| = n, |E| = m, U: value of maximal flow.
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