Premaster Course Algorithms 1

Chapter 7: Network Flow

Christian Scheideler
SS 2019

Network Flow

Overview:

 Foundations

* Ford-Fulkerson algorithm
 Edmonds-Karp algorithm
e Goldberg's algorithm

5/20/2019 Chapter 7

Foundations

Definition 1: A flow network (G,s,t,c) consists of a directed graph G=(V,E), a source s
e V,asinkt € V, and a capacity function c:VxV — R_,, with c(u,v) = O if
(u,v) ¢ E.

In the following, we assume that s ~- u ~ t forallu € V, where u ~- v means
that there is a directed path from u to v in G. (Otherwise, we can remove u and all
of its edges from G, because a flow from s to t cannot be sent via u.)

Definition 2: Let (G,s,t,c) be a flow network.

a) A network flow in G is a function f:VxV — R with the property that

f(u,v) < c(u,v)foralu,veV (capacity constraints)
flu,v) = = f(v, u) forallu, v e V (skew symmetry)
>,oy fu,v) =0forallu e V \ {s, t} (flow conservation)

b) The value | f | of a network flow f is defined as
1 fl=2,. (s, V.

5/20/2019 Chapter 7

Foundations

A network flow in G is a function :VxV — R with the property that
f(u,v) < c(u,v)forallu, v eV (capacity constraints)
f(u,v) = - f(v,u)forallu,v eV (skew symmetry)
2,y flu,v) =0forallu e V\ {s, t} (flow conservation)

Remark 3: Let f be a flow in a flow network (G,s,t,c). Then

a) f(v,v)=0forall v eV (due to skew symmetry).

b) >,., f(u,v) =0forallv e V\ {s, t} (flow conservation & skew symmetry).
c) Forall u, v e Vwith (u, v), (v, u) ¢ E itholds that f (u, v) =f (v, u) = 0.

d) Forall veV \ {s, t},

2 fuv)= - 2 fuyv)

ueV, f(u,v)>0 ueV, f(u,v)<0

e) Afunction f with f (u, v) = 0 for all u, v € V is a valid flow.

5/20/2019 Chapter 7

Foundations

Example of a valid flow:

12|12
110 l I
8& Vv >/ y

1114

15|2o

t f(u, v)lc(u, v), |fl =

* Only positive flows are shown (negative flows are implied by skew
symmetry).

 For example, f(v,u)=1, so f(u,v)=-1.

« This implies that flow cannot flow at the same time in both directions for a
pair {u,v}.

 Why is it fine to have that restriction? (Concretely, why can we ignore

instances having positive flows in both directions between u and v without
loss of generality, when just focusing on [f|?)

5/20/2019 Chapter 7

Foundations

12|12

>

11)16 X \15|2f
/ I I77

1114

Remark 4: The outgoing flow of s is equal to the incoming flow at t.
Proof:
o |t follows from skew symmetry:

2VEV 2WEV f(V’W) - Z{v,w} (f(V’W)+f(W’V)) + ZVEV f(V!V) =0
 Moreover, it follows from flow conservation:

Zvev Zwev T(V,W) = Zyey f(8,W) + 2y T(Lw)

= [l + Zyey f(tw)
 Hence, due to skew symmetry:
1] = ey f(W,1)

5/20/2019 Chapter 7

MAXFLOW Problem:

Input: a flow network (G,s,t,c).
Output: a flow f in G with maximum value | f |.

Remark 5: A maxflow problem (G, s, ..., s, {;, ...1;, ¢) with multiple sources s,
..., S, and multiple sinks t;, ... t, with the goal to transfer as much flow as
possible from the sources to the sinks (i.e., find a flow f:VxV — R maximizing

2P (Z,.y f(s;,v))) can be reduced to the original maxflow problem:

Construct G' = (V', E') and ¢’ as follows:
V= VU {s, t}
E=EuUf,s) |1 <i<pluft,t1=<i=<q}

c'(u,v)z{c(u,v) u,veV
o0 U=5s or v==t

Then there is a flow f from s, ..., s, 10

t), ..., t,ofvalue o In (G, s, ..., 5., 1;, ... 1, C)
if and only if there is a flow f' from s to t in
(G', s, t, c) of value ¢ (see the figure).

5/20/2019 Chapter 7

Ford-Fulkerson Algorithm

How do we solve the maxflow problem?

Definition 6: Let (G,s,t,c) be a flow network and f be a flow in G.
a) For any u, v € V, the residual capacity c{(u,v) is defined as

c{u,v) =c (u,v) —f (u,v).
b) The residual network G; = (V,Ey) is defined as
E.={(u,v) € VxV | c(u,v) > 0}

c) Asimple path P from s to t in G; is called an augmenting path.
The residual capacity c; (P) of P is defined as

c{(P) = min { c{(u,v) | (u,v)eP }.

5/20/2019 Chapter 7

Ford-Fulkerson Algorithm

Example: augmenting path and flow augmentation

Flow network:

G

12|12
1116/7u > X 15[20
S 110 177
Sh Vv > y

11|14

5/20/2019 Chapter 7

Example: augmenting path and flow augmentation

Flow network: Residual network:

G G,
12[12

11|16 - 10 5/7
s 0 || 14 s 13
/, X
813 8 v

\Y
1114

cq((u,v) =c (u,v) —f (u,v)

5/20/2019 Chapter 7 10

Example: augmenting path and flow augmentation

Flow network: Residual network with augmenting path:
G G,
12|12 12
u > X N 1520 5 u <€ X 5
11/16 \ / \
/ 11 s p 15 ¢
1 1/4
sl | A 77/’ v C ‘X > /
8
&k\ v >(y)y~ 44 v >y
11|14 11

c/(P) = min { c{(u,v) | (u,v)eP}

— residual capacity of path P: 4

5/20/2019 Chapter 7 11

Example: augmenting path and flow augmentation

Flow network: Residual network with augmenting path:

Xx
X
5 7 :

/
>y

G 12/12

u
1116

S 20 || 14

813

Augmented flow:

419

\'

1114

G’ 1212 _
u > X 19]20 Path P of residual
W \ capacity 4 added to G:
s 110] |14 9 717 t
1213\, >(y /M,
1114
5/20/2019 Chapter 7

12

Example: augmenting path and flow augmentation

Flow network: Residual network with augmenting path:
G 12/12
u
W
14
= Q | 4|9
813 y
11|14

Augmented flow:
Gl

u
1116

S 10| |14

1213

5/20/2019 Chapter 7 13

Ford-Fulkerson Algorithm

Are we allowed to add a valid flow in G; to a flow in G?

Lemma 7: Let (G, s, t, ¢) be a flow network and f be a flow

In G. Let G; be the residual network of G induced by T,
and let ' be a flow in G.. Then

(F+), v)=f(u,v)+f (u, v)
is a valid flow in G with value |f + f'| = |f| + |f'].

5/20/2019 Chapter 7 14

Ford-Fulkerson Algorithm

FORDFULKERSON (Flow network G = (V, E), s, t,))

{

for each edge (u, v) € E
{flu,v]:=0;f[v,u]:=0;}
G; := residual network of G w.r.t. f;
while (3 a path P from sto tin G)
{ /I compute maximal flow along P
c: (P) :==min {c;(u, v) | (u, v) € P)};
for each edge (u, v) e P
{flu,v]:=f[u,v]+c;(P); f[v,u] :==-f[u, v];}
G; := residual network of G w.r.t. f;

}
output f

5/20/2019 Chapter 7

I/ initially empty flow
/[P is an augmenting path

Il ¢ (u,v)=c(u,v)—"f(u,v)
/[update flow along P

15

Example: Ford-Fulkerson Algorithm

Flow network:

G
12 S
u X
16
sl]\
N)y/'

5/20/2019 Chapter 7

16

Example: Ford-Fulkerson Algorithm

Flow network:

G

12

14

5/20/2019

Residual network with augmenting path:

12

Chapter 7 17

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G G;
12
12
u > x N 20 16 u X 20
16/7 \
10]] 4 t
10 4 t S
S d 7 \ 9 7
h / o > ‘
Y, > Y y
14 y 14
Augmented flow:
© 4|12
u | > X |20
4116
1011 |4 t
= \lll | 219 |7/r
|13 v >y 414
4|14

5/20/2019 Chapter 7 18

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G G;
12
12
u > x N 20 16 u X 20
16/7 \
10](] 4 t
10 4 t S
S d 7 \ 9 7
h / o > ‘
\'
! 14 > 14 !
Augmented flow: New residual network with augmenting path:
G 412 Gi 2 >
l > x N_|20 12_zp U — N
110 || |4 t s " 1olla 2 7
|13\A /M’ 13 - ‘
v v >\ Y
4|14 4 10

5/20/2019 Chapter 7 19

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G Gy
8
4|12
u | > X 120 12 u € 2(x
4|16/7

.
P

5/20/2019 Chapter 7 20

Example: Ford-Fulkerson Algorithm

Flow network:

G
4]12
u | > X |20
4116 \
10| 14 t
> \lll | 419 |7/r
113 v >y 414
4|14
Augmented flow:
G
4]12
u | > X 7|20
11|16 \
711q | 14 t
s | | 79 I?W/I
|13\A v >(y 414
11]14
5/20/2019

Residual network with augmenting path:

>

>

8
<
4
4 10lla 4
5
<€

>
10

Chapter 7 21

Example: Ford-Fulkerson Algorithm

Flow network:

G
4|12

> X %
419 7 t
> /M

u
4|16

S |10 |4

|13\\V

4|14 y
Augmented flow:
G
4|12
u X 7120
11]16 \
= 71101 | |4 717
HX; v /’
11|14
5/20/2019

Residual network with augmenting path:

New residual network with augmenting path:

/ 7

. t
\ 11 /
T >0

Chapter 7 22

Example: Ford-Fulkerson Algorithm

Flow network:

G
4|12
u | > X 7|20
11|16 \
71100 |4
> | | 419 7|7/’
|13\\ v >(y 414
11|14

5/20/2019

t

Residual network with augmenting path:

G

B AN

11 31|11 4

Chapter 7 23

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G G;
8
4|12
u | >(x ~_ 7|20 5 o - = X 13
llly’ \ 1/ ’
11 7
31|11 4 t
Y, Im S \ 5 7/
13 11 4
|13\\ v > y v € -3
11|14 3
Augmented flow:
© 2|12
12|1
u | > X 15]20
-l \
100 14 t
S | l | 719 I?W
&k . >y /M
11|14

5/20/2019 Chapter 7 24

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G G;
4|12
| >(x ~_ 7|20 5/7 - 2 X
11|16 \ /
/ 11 4
711201 |4 7|7 S \
13
I\\ - > y v € S y
11|14 3
Augmented flow: New residual network with augmenting path:

G G
u X 15[20 5 X \
11]16 \
/ '[11 44 l
y y ‘/

\ /, 13
8]13 v >/ 414 % >

5/20/2019 Chapter 7 25

Example: Ford-Fulkerson Algorithm

Flow network:

G
12|12

> X 15|20

u
1116

s 10 | | 114 717

419
8|13

414

v >
11|14 Y

5/20/2019

Residual network with augmenting path:

Chapter 7 26

Example: Ford-Fulkerson Algorithm

Flow network: Residual network with augmenting path:
G G;
12
12|12
u | > x 15|20 5 U < X 5
11 15
\ 5 11 /
8|13 v > y v € -3
11|14 3

Augmented flow:

G
12|12
u | > X 19|20
11]16 \
> \lli N A 7|7/’ :
12113, >(y 414
11|14

5/20/2019 Chapter 7 27

Example: Ford-Fulkerson Algorithm

Flow network:

G

u > X 15|20
11]16 \

s 10 | | 114 717

12|12

11|14
Augmented flow:
G
12|12
| > X 9|20
lﬂy?
|10 H/I
12|13 > y
11|14
5/20/2019

Residual network with augmenting path:

Xﬂ‘
=

c
7\ w A
<

Gf
12
u € X 1
% \
11 19
s 11113 5 7 t
12 /
11
1 v 1€ sV 4
3

Chapter 7 28

Example: Ford-Fulkerson Algorithm

Flow network:

G G

19]20 11/16

5/20/2019 Chapter 7 29

Do we always have a maximum flow f if G; has no more paths from s to t?

Definition 8: Let (G,s,t,c) be a flow network. For some cut (X,Y) of \V we define

FX) =2 2 fxy), cX,Y)=2 2c(xy

xeX yeY xeX yeY
X o Y

—

h

Theorem 9: (Max-Flow Min-Cut Theorem)

Let (G,s,t,c) be a flow network and f be a flow in G. Then the following statements
are equivalent.

a) fis amaximal flow in G.

b) The residual network G; of G w.r.t. f does not contain any augmenting path.

c) |fl =c(S, T) for some cut (S, T) of G with seS and teT.

5/20/2019 Chapter 7 30

Edmonds-Karp Algorithms

Problem: in the worst case, the Ford-Fulkerson Algorithm is too
slow

G
1.000.000 (u 1000000 If we always pick an augmenting path
\ along the edge of capacity 1, it takes
S ll t 2.000.000 (') augmentations to reach
~vy a maximum flow.
1.000.000 v 1.000.000

In 1972, Edmonds and Karp proposed two heuristics in order to
compute maximal flows more efficiently.

Heuristic 1: Choose the augmenting path of largest value.
Heuristic 2: Choose the shortest augmenting path.

5/20/2019 Chapter 7 31

Edmonds-Karp Algorithms

Theorem 10: Let (G, s, {, ¢) be a flow network
with integer capacities c(u, v). Then heuristic
1 computes a maximal flow * In time
O(|E|* - log [E] - log |f*]).

Theorem 11: Let (G, s, 1, ¢) be a flow network
with integer capacities c(u, v). Then heuristic 2
computes a maximal flow in time O(|E|*|V|).

5/20/2019 Chapter 7 32

Goldberg's Algorithm

Intuition:

* A flow network can be seen as a network
of liquids:
edges correspond to pipes and nodes
correspond to pipe connections.

» Every node has a reservoir that can
collect an arbitrary amount of liquid.

* Every node, its reservoir, and all of its pipes

are arranged on a platform whose height may increase during the execution
of the algorithm.

5/20/2019 Chapter 7

33

Goldberg's Algorithm

Intuition:

» The node heights determine how the flow is moved through
the network: flow always flows downhill.

* Initially, the source s pumps as much flow as
possible into the network (= c(s, V — 9)).

* If the flow reaches some intermediate node,
it is collected in its reservoir. From there it will
be sent downhill later.

« If all non-saturated pipes that leave a node
u lead to nodes v that are above u, then the
height of u will be increased, i. e., we lift u.

* If the total flow that can flow to a sink, reaches it, then the excess flow in the reservoirs
Is sent back to the source by lifting the heights of the intermediate nodes beyond the
height of the source.

5/20/2019 Chapter 7 34

Goldberg's Algorithm

Definition 12: Let (G,s,t,c) be a flow network. A preflow is a function

f'VxV—[R satistying the following properties:

f(u,v)<c(u,v)forallu,veV (capacity constraints)
f(u,v)=-f(v,u) forallu,veV (skew symmetry)
f(V,u)=0forallu € V\{s} (preflow condition)

The excess flow of a node v is defined as e;(v)=f(V,v). Anode v+t is
called active if e;(v)>0.

Goldberg " s Algorithm assigns to each node v a height h(v)eN. The
height function is called legal if h(s)=|V|, h(t)=0, and for all edges
(v,w) in the residual network G, h(v)<h(w)+1.

(l.e., for all (v,w)cE with h(v)=h(w)+1, (v,w)ZE;.)

An edge (v,w) in G;is called admissible if h(v)>h(w).
(Together with the previous condition it follows that h(v)=h(w)+1.)

5/20/2019 Chapter 7 35

Goldberg's Algorithm

Basic Operations:
e Push(u,v): push as much flow as possible from u to v

« Lift(u): lift u as much as possible without violating the legality of the
height function.

In pseudocode:

Push(u,v):
o:=min{es(u),cqu,v)}

f(u,v):=f(u,v)+o u
Sminys —~
Ci(V,U):=C¢(V,u)+0 v

= -0
) B A .

Lift(u):
| tﬂj(zj)::min{ h(v)+1 | (u,v)EE,} J "

5/20/2019 Chapter 7 36

Goldberg's Algorithm

Goldberg’s Algorithm works as follows:

Preflow-Push Algorithm:
for each ucV\{s} do h(u):=0; e.(u):=0
for each (u,v)eE do f(u,v):=0; }(V,U)Z:O
h(s):=|V|
for each (s,u)cE do
f(s,u):=c(s,u); f(u,s):=-f(s,u); equ):=c(s,u)
while (there are active nodes u) do
If (there I1s an admissible edge (u,v))
then Push(u,v)
else Lift(u)

5/20/2019 Chapter 7 37

Example:

G

5/20/2019

Chapter 7

Capacities are marked in red

38

Example:

5/20/2019

Chapter 7

After initialization:

* s is lifted to height 7. The heights
of all other nodes are set to O.

» Every edge from s is saturated.
All other edges have a flow of 0.

No PUSH-operation can currently
be executed.

Operations that can be executed are
LIFT(u), LIFT(v) or LIFT(w).

39

Example:

5/20/2019

Chapter 7

After LIFT(v):

The height h(v) is set to
1+ min{h[u]]| (v, u) € E}
=1+0=1.

Now, operations that can be executed
are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, xX), PUSH(v, y),

PUSH(v, t).

40

Example:

5/20/2019

Chapter 7

After PUSH(v, y):

Operatons that can be executed are
LIFT(u), LIFT(w), LIFT(y) or
PUSH(v, u), PUSH(v, w),

PUSH(v, X), PUSH(v, t).

41

Example:

5/20/2019

Chapter 7

After LIFT(y):

The height h(y) is set to
1+ min{h[u] | (y, u) € Eg}
=1+0=1.

Operations that can be executed
are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, 1),
PUSH(y, t).

42

Example:

5/20/2019

Chapter 7

After PUSH(y, t):

Operations that can be executed
are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),
PUSH(v, x), PUSH(v, t).

The algorithm continues to run

until no PUSH or LIFT operation
can be executed.

43

Goldberg's Algorithm

Theorem 13: Let (G, s, t, ¢) be any flow network with n nodes
andzm edges. Then Goldberg’s Algorithm has a runtime of
O(n“m).

With an improved selection of Push and Lift Operations, this
runtime can be improved.

Rules for the choice of active nodes:

 FIFO: The active nodes are organized in a FIFO queue, I.e.,
new active nodes are added to the back of the queue and
active nodes to be processed are taken from the front. With
this rule, a runtime of O(n®) can be reached.

* Highest-Label-First: Always take the active node of largest
height. In this case, one can reach a runtime of O(Vm -n?).

5/20/2019 Chapter 7 44

Other Variants

Goldberg, 1985: FIFO PPA: O(|V]?).
Goldberg, Tarjan, 1986:
Improved FIFO PPA: O(|V| - |E| - log (|V|? - |[E])).
e Goldberg, Tarjan, 1986, Cheriyan, Maheshwari 1989:
Highest Label PPA: O(|V|? - V|E]).
* King, Rao, Tarjan, 1994:
O(IVI - [E[109,/ 1og vy IV])-
e Orlin, 2013:
O(VI - [E]).
 Randomized Variants

5/20/2019 Chapter 7

History of maximal flow algorithms:

G =(V, E) with |V| =n, |[E| =m, U: value of maximal flow.

5/20/2019

Year Researcher Run time

1 1951 Dantzig O(anU)
2 1955 Ford, Fulkerson O(nmlU)
3. 1970 Dinitz / Edmonds, Karp O(nmg}
4. 1970 | Dinitz O(n?m)
5. 1972 Edmonds, Karp / Dinitz O(m2 log U7)
6. 1973 Dinitz / Gabow O(nmloglU)
7. 1974 Karzanov O(ng)
8. 1077 | Cherkassky O(n? /m)
9. 1980 Galil, Naamad O(nm log‘2 n)
10. 1983 Sleator, Tarjan O(nmlogn)
11. 1986 | Goldberg, Tarjan O{nm log(nz/-;rn))
12. 1987 Ahuja, Orlin Onm + -nQ log U7)
13. 1987 | Ahuja et al. O(nmlog(nyTog U /(m + 2)))
14, 1989 Cheriyan, Hagerup E(nm + ?1.2 log2 n)
15. 1990 Cheriyan et al. O(n-g/ log n)
16. 1990 Alon O(nm + n8/3 log n)
17 1992 | King et al. O(nm + n21¢)
18. 1993 Philipps, Westbrook O(n m(logm/n n | logi‘z—l_E n))
19. 1094 King et al. O(nm I”gm/[n log 1) n)
20, 1997 | Goldbers, Rao 0(m3/2 log(n2 /m) log 1)

O(-nQ/Sm. lop;(-ng/m) log U7

Chapter 7

46

	Premaster Course Algorithms 1��Chapter 7: Network Flow
	Network Flow
	Foundations
	Foundations
	Foundations
	Foundations
	Foliennummer 7
	Ford-Fulkerson Algorithm
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Foliennummer 12
	Foliennummer 13
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18
	Foliennummer 19
	Foliennummer 20
	Foliennummer 21
	Foliennummer 22
	Foliennummer 23
	Foliennummer 24
	Foliennummer 25
	Foliennummer 26
	Foliennummer 27
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Edmonds-Karp Algorithms
	Edmonds-Karp Algorithms
	Foliennummer 33
	Foliennummer 34
	Goldberg´s Algorithm
	Goldberg´s Algorithm
	Goldberg´s Algorithm
	Foliennummer 38
	Foliennummer 39
	Foliennummer 40
	Foliennummer 41
	Foliennummer 42
	Foliennummer 43
	Goldberg´s Algorithm
	Other Variants
	Foliennummer 46

