
Advanced Distributed 
Algorithms and Data Structures
Chapter 10: Communication Primitives 

Christian Scheideler
Institut für Informatik

Universität Paderborn



Overview

• Broadcast
• Convergecast
• Anycast

WS 2016 Chapter 10 2



Broadcast
Broadcast problem: send a message to all other
processes in the system

• Process P1 has a message M that it wants to send to
processes P2 to Pn.

• We assume that the processes form a clique.

Naive strategy:
• P1 sends M directly to P2 to Pn.

Problem: high runtime and communication work at P1

WS 2016 Chapter 10 3



Broadcast
Push Protocol:
• Every process that already got the message forwards

it to a random process in each round.

Pseudo-code of Push protocol:

timeout: true →
if M≠⊥ then

v:=random(N)
v←push(M)

push(msg) →
if M=⊥ then

M:=msg

WS 2016 Chapter 10 4

Initially, only P1 holds the message
and all other processes have M=⊥.
As before, N contains connections
to all other processes in the system.



Broadcast
Push Protocol:
• Every process that already got the message forwards

it to a random process in each round.

Theorem 10.1: The Push Protocol needs O(log n) time 
and O(n log n) communication work, w.h.p., till all 
processes received the message.
Proof:
• Phase 1: exponential progress till n/2 processes are

informed.
• Phase 2: slow progress towards reaching all 

processes.

WS 2016 Chapter 10 5



Broadcast
Analysis of Phase 1:
• Phase 1a: After 2c⋅log n rounds, P1 has informed at 

least c⋅log n other processes, w.h.p.
Proof: simple application of Chernoff bounds

• Phase 1b: As long as the number of informed
processes is between c⋅log n and n/2, the number of
informed processes grows by a factor of at least 5/4, 
w.h.p.

WS 2016 Chapter 10 6

informed



Broadcast
Analysis of Phase 1:
• Phase 1a: After 2c⋅log n rounds, P1 has informed at 

least c⋅log n other processes, w.h.p.
Proof: If this is not the case, a process must have
been informed at least 3 times, which is very unlikely.

• Phase 1b: As long as the number of informed
processes is between c⋅log n and n/2, the number of
informed processes grows by a factor of at least 5/4, 
w.h.p.
Exercise: simple application of Chernoff bounds

• Phase 1b certainly takes just O(log n) rounds, w.h.p., 
till at least n/2 processes are informed, so altogether
Phase 1 completes in O(log n) rounds, w.h.p.

WS 2016 Chapter 10 7



Broadcast
Analysis of Phase 2:
• Xt: number of uninformed processes at the beginning of round t
• Suppose that Xt≤n/2. Then it holds:

Pr[uninformed process not informed] ≤ (1-1/n)n/2 ≤ e-1/2 ≤ 0.61
• Therefore, E[Xt+1] ≤ 0.61⋅Xt
• As long as Xt=Ω(log n), it follows from the Chernoff bounds that

Xt+1 ≤ 0.75⋅Xt w.h.p.
• Hence, after O(log n) rounds we are left with O(log n) uninformed

processes w.h.p.
• Let P be one of these uninformed processes.
• Pr[P not informed in c⋅ln n further rounds] ≈ ((1-1/n)n)c ln n ≤ (1/n)c

• Thus, after O(log n) rounds all processes are informed w.h.p.

Problem of phase 2: a lot of redundant message transmissions

WS 2016 Chapter 10 8



Broadcast
• M: broadcast message
• A process is notified if it has received a NOTIFY message.
• A process is informed if it has received message M.

Initially, only the sink is notified and informed.

Push&Pull Protocol:
• Every notified process sends a NOTIFY(M) message to a random process in each round.
• The first time a process receives a NOTIFY(M) message, it sends an ACK(M) message

back to the sender.
• If a process v got an ACK(M) message from a process w, it forwards M to w once it has

received it.

Theorem 10.2: The Push&Pull Protocol needs O(log n) time and just O(n) communication work
for the broadcast message, with at most O(log n) broadcast message transmissions per 
process, till all processes received the message.
Proof:
• runtime and transmissions per process: follows from the proof of Theorem 10.1
• total communication work: every process will only receive the broadcast message once

(since it only acknowledges the first NOTIFY message)

WS 2016 Chapter 10 9



Broadcast
Pseudo-code of Push&Pull protocol: (P1: initially, notified=true and M set)

timeout: true →
if notified then

v:=random(N)
v←notify(in)

notify(out) →
if not notified then

out←ack(in)
delete out
notified:=true

ack(out) →
if M≠⊥ then

out←push(M)
delete out

else
A:=A∪{out}

WS 2016 Chapter 10 10

push(msg) →
M:=msg
for all v∈A do

v←push(M)
delete v

Variables: 
• notified: Boolean variable that is true

if process has been notified
• A: stores all outgoing connections

whose sinks have sent an ACK, so
they need to be informed about M



Broadcast
Pseudo-code of Push&Pull protocol: (P1: initially, notified=true and M set)

timeout: true →
if notified then

v:=random(N)
v←notify(in)

notify(out) →
if not notified then

out←ack(in)
delete out
notified:=true

ack(out) →
if M≠⊥ then

out←push(M)
delete out

else
A:=A∪{out}

WS 2016 Chapter 10 11

push(msg) →
M:=msg
for all v∈A do

v←push(M)
delete v

Remark: The code is not self-stabilizing
(in a sense that the broadcast wouldn´t
work from an arbitrary state).

Exercise: think about a self-stablizing
version.



Broadcast
Advantage: 
• Every process only receives the broadcast message once.
• Can also be adapted to asynchronous environments since it suffices

for each notified process to contact O(log n) other processes before
it stops sending further notifications.

• Protocol also works well for processes with different speeds (in a 
sense that the broadcast message is spread at the median timeout
period of the processes, given that message transmissions are fast).

But:
• Communication work is not balanced among the processes since it

may vary from O(1) to Θ(log n).
• Not robust to adversarial behavior (since adversarial processes may

decide, for example, to drop the message).

WS 2016 Chapter 10 12



Broadcast
Suppose that process P0 initiates the broadcasting.

Solution to unbalanced communication work: 
• P0 cuts the broadcast message M into k=Ω(log n) pieces M1,…,Mk.
• For each i, P0 sends Mi to a random process Pi.
• Processes P1,…,Pk initiate the broacasting of M1,…,Mk in parallel 

using the Push&Pull protocol.

• It can be shown that in this case every process has a total 
communication work of O(k) over all pieces, w.h.p., which is optimal. 

• Also, when using error-correcting codes (e.g., Reed-Solomon 
codes), which only require the processes to receive a con-stant
fraction of the k pieces to recover M, the solution above can tolerate
a constant fraction of crash failures (i.e., the process simply stops
working).

WS 2016 Chapter 10 13



Broadcast
Suppose that process P0 initiates the broadcasting.

Solution to unbalanced communication work: 
• P0 cuts the broadcast message M into k=Ω(log n) pieces M1,…,Mk.
• For each i, P0 sends Mi to a random process Pi.
• Processes P1,…,Pk initiate the broacasting of M1,…,Mk in parallel 

using the Push&Pull protocol.

• Another benefit of using error-correcting codes is that the slow
phase (phase 2) in the Push&Pull protocol can be avoided:

Suppose that for a process to recover M it suffices to receive any k/2
out of k messages. Then it suffices to reach a point where every Mi
has been sent to at least 3n/4 processes so that every process can
recover M w.h.p.
Why?

WS 2016 Chapter 10 14



Broadcast
Alternative solution to adversarial behavior:

Careful Push&Pull Protocol:
• Every notified process sends a NOTIFY(M) message to a random process 

in each round.
• Every time an uninformed process receives a NOTIFY(M) message, it

sends an ACK(M) message back to the sender.
• Once a process has been informed, it sends a NACK(M) message to all 

processes that have already notified it or will notify it in the future.
• If a process v got an ACK(M) message from a process w and has not 

received a NACK(M) from it yet, it forwards M to w once it has received it.

Remark: This protocol can handle a constant fraction of adversarial processes, 
and in contrast to the previous protocol (where the constant fraction depends
on the choice of k and the redundancy of the error-correcting code), the
constant fraction can be arbitrarily close to 1 if the protocol is run sufficiently
long.

WS 2016 Chapter 10 15



Overview

• Broadcast
• Convergecast
• Anycast

WS 2016 Chapter 10 16



Convergecast
Convergecast problem: all processes want a send a message to
some sink process.

Examples:
• The sink wants to know whether any one of the processes is

currently in a specific state.
• The sink wants to know the current number of processes.
• The sink wants to know the sum of the values of the

processes.
• The sink wants to determine the voting outcome of the

processes.
• The sink wants to know whether a given predicate of the form 

Vv∈V p(v) or Λv∈V p(v) is true, where p(v) is a predicate
depending only on the local state of process v. 

WS 2016 Chapter 10 17



Convergecast
Convergecast problem: all processes want a send a message to
some sink process

Assumption: messages can be combined on their way to the sink 
process (see the examples).

Solution: sink process maintains a broadcast tree (using, for
example, the tree built up by the ACK messages in the standard
push&pull broadcast protocol), which will then be used by the
other processes to send their values towards the sink.

Problem: adversarial processes may drop messages, may not 
report any value, or combine values in the wrong way

WS 2016 Chapter 10 18



Convergecast
TCM model: adversary can only cause messages to be
dropped. (If a TCL did not get a value from the AL, it may
just use a default value.)

Simple adversarial model: a fixed set of processes
(except the sink) is under DoS attack
Solution: just use the Push&Pull algorithm to build up a 
convergecast tree for the non-blocked processes, and
then collect and combine the values along that tree.

Adaptive adversarial model: the adversary can block an 
arbitrary ε-fraction of the processes (except the sink) in 
each round

WS 2016 Chapter 10 19



Convergecast
Consider the adaptive adversarial model.

Problem: The sink wants to know whether a given predicate p of the form Vv∈V
p(v) or Λv∈V p(v) is true, where p(v) is a predicate depending only on the local
state of process v. 

Solution for p=Vv∈V p(v): Convergecast problem reduces to broadcasting
problem. We assume that all processes execute the Push protocol.
1. The sink initiates the computation of p via a broadcast request.
2. Once a process v has received the broadcast request, and p(v)=true, it

initiates a broadcast of (p,true). All will help spreading (p,true) messages
via the Push protocol.

3. The sink waits for O(log n) many rounds. If it has never received a (p,true) 
message, it will output true, and otherwise it will output false.

Exercise: How to describe the protocol in pseudo-code.

Problem: If only a few processes v have p(v)=true, the adversary might be
lucky with blocking these so that the sink sets p to false.

WS 2016 Chapter 10 20



Convergecast
Consider the adaptive adversarial model.

Problem: The sink wants to know whether a given predicate p of the form Vv∈V
p(v) or Λv∈V p(v) is true, where p(v) is a predicate depending only on the local
state of process v. 

Solution for p=Vv∈V p(v): Convergecast problem reduces to broadcasting
problem. We assume that all processes execute the Push protocol.
1. The sink initiates the computation of p via a broadcast request.
2. Once a process v has received the broadcast request, and p(v)=true, it

initiates a broadcast of (p,true). All will help spreading (p,true) messages
via the Push protocol.

3. The sink waits for O(log n) many rounds. If it has never received a (p,true) 
message, it will output true, and otherwise it will output false.

Exercise: How to describe the protocol in pseudo-code.

Solution for p=Λv∈V p(v): Similar to above, but with true replaced by false and
vice versa.

WS 2016 Chapter 10 21



Convergecast
Problem: The sink wants to compute the sum S of the values
stored in the processes.

Solution: The problem can be reduced to counting the number of
processes and solving the following load balancing problem.

Load balancing problem: Given processes P1,…,Pn with loads
L1,…,Ln, balance the loads so that in the end, every process has
a load of L=(1/n) Σi=1

n Li.

Once L is known, S=Σi=1
n Li can easily be computed because

S=n⋅L and n is known because we assume the processes to
form a clique.

WS 2016 Chapter 10 22



Convergecast
Split&Combine Load Balancing:
• At the beginning of each round, each process v takes an ε-fraction of its

current value and sends it to a randomly chosen process w. If w does not 
respond by the beginning of the next round, v adds this ε-fraction back to its
value and sends a NACK message to w so that w deletes this ε-fraction. 
Otherwise, v sends an ACK message to w so that w adds this ε-fraction to
its value.

Conjecture: After O((1/ε)2⋅log n) many rounds, every process has a value of
(1±O(ε))L, w.h.p.

Remarks:
• The protocol should certainly work for a fixed set of blocked processes, but 

we conjecture that it also works for the adaptive adversarial model as long
as the difference between the values is not too large (i.e., there are no
extreme outliers that are blocked by the adversary by chance).

• Computing the exact value of L is difficult because there may always be
values in transit.

WS 2016 Chapter 10 23



Convergecast
Pseudo-code of split&combine protocol:

We need the following variables:
• N: as before neighborhood of a process
• in: incoming relay, as before
• ack: Boolean variable that is true if the reply of the contacted

process v is received before the next timeout
• val: gives the value (or load) stored in the process
• sentval: gives the value to be transferred to the randomly selected

process v
• count: assigns a unique number to each transfer attempt
• S: stores the set of transfer requests that are still active (i.e., no ACK 

or NACK has been received for these yet)

WS 2016 Chapter 10 24



Convergecast
Pseudo-code of split&combine protocol:

timeout: true →
if ack=false then

val:=val+sentval
v←nack(in,count)

else
ack:=false

if val>0 then
count:=count+1
sentval:=ε⋅val
val:=val-sentval
v:=random(N)
v←push(in,count,sentval)

push(out,c,v) →
S:=S∪{(out,c,v)}
out←received(c)

WS 2016 Chapter 10 25

received(c) →
if c=count then

ack:=true
v←ack(in,c)

ack(out,c) →
if ∃(out,c): (out,c,v)∈S then

val:=val+v
delete out; S:=S\{(out,c,v)}

nack(out,c) →
if ∃(out,c): (out,c,v)∈S then

delete out; S:=S\{(out,c,v)}



Convergecast
Requires FIFO delivery of messages (push received before nack!).

timeout: true →
if ack=false then

val:=val+sentval
v←nack(in,count)

else
ack:=false

if val>0 then
count:=count+1
sentval:=ε⋅val
val:=val-sentval
v:=random(N)
v←push(in,count,sentval)

push(out,c,v) →
S:=S∪{(out,c,v)}
out←received(c)

WS 2016 Chapter 10 26

received(c) →
if c=count then

ack:=true
v←ack(in,c)

ack(out,c) →
if ∃(out,c): (out,c,v)∈S then

val:=val+v
delete out; S:=S\{(out,c,v)}

nack(out,c) →
if ∃(out,c): (out,c,v)∈S then

delete out; S:=S\{(out,c,v)}



Convergecast
Split&Combine Load Balancing:
• At the beginning of each round, each process v takes an ε-fraction of its

current value and sends it to a randomly chosen process w. If w does not 
respond by the beginning of the next round, v adds this ε-fraction back to its
value and sends a NACK message to w so that w deletes this ε-fraction. 
Otherwise, v sends an ACK message to w so that w adds this ε-fraction to
its value.

Problem: If the rounds (i.e., timeouts) are executed too quickly, then the values
are never successfully transferred. So a MIMD approach, for example, is
needed to adjust the timeout periods so that an acknowledgement of a pushed
value is received before the next timeout.

An interesting, alternative approach can be found here, for example:
Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed
diffusion: a scalable and robust communication paradigm for sensor networks. 
Proc. of the 6th Intl. Conference on Mobile Computing and Networking 
(MobiCom), pp. 56-67, 2000.

WS 2016 Chapter 10 27



Overview

• Broadcast
• Convergecast
• Anycast

WS 2016 Chapter 10 28



Anycast
Anycast problem: given a predicate p and a message M, 
send M to any process v with p(v)=true.

Examples:
• Send task to any idle process
• Send task to any process that is authorized or has the

resources to execute it

Applications:
• Service discovery and auto-configuration

(more flexible and robust than DHCP)
• Standardized by IETF (RFC 1546)

WS 2016 Chapter 10 29



Anycast
Problem: send task to any idle process

Solution: work stealing

Basic idea: any process that is idle tries to steal a 
task from the pool of tasks

See also: Robert Blumofe and Charles Leiserson. 
Scheduling multithreaded computations by work
stealing. In Proc. of the 35th Symp. on Foundations
of Computer Science (FOCS), pp. 356-368, 1994.

WS 2016 Chapter 10 30



Anycast
Problem: send task to any idle process

Push&Pull protocol:
• every busy process that has a task tries to push it to a random

neighbor,
• every idle process regularly sends a pull request to a random

neighbor to ask for a task, and
• any idle process receiving a task processes it and becomes

busy.

Works fine if there are many tasks or many idle processes since
chances are high in this case that a task is pushed to an idle
process or that an idle process pulls a task. 

WS 2016 Chapter 10 31



Anycast
Problem: send task to any idle process

Push&Pull protocol:
• every busy process that has a task tries to push it to a random

neighbor,
• every idle process regularly sends a pull request to a random

neighbor to ask for a task, and
• any idle process receiving a task processes it and becomes

busy.

Problem: If there are only a few idle processes and only a few
tasks, then it may take quite some time until all tasks are
processed resp. all idle processes have found a task.

WS 2016 Chapter 10 32



Anycast
Problem: send task to any idle process, but there are few tasks
and idle processes

Simple solution: suppose that we have a leader process v (which
can be determined with the help of the median rule, for
example).
1. v uses the notification mechanism in the Push&Pull

broadcast protocol to set up a convergecast tree to v.
2. All tasks are sent towards v, and all idle processes sent an 

idle token towards v in that tree.
3. Whenever a task meets an idle token on its way to v or at v, 

the task is sent to the origin of the idle token (which is easy 
to do if the token contains a relay to v).

WS 2016 Chapter 10 33



Anycast
Problem: send task to any idle process, but there are few tasks and idle
processes

Alternative solution: Convergecast-Pull protocol
• Every idle process sends a pull request to a random neighbor in 

each round.
• The pull requests will create convergecast trees (with the constraint

that every busy as well as idle process participates in at most c of
them) along which the tasks will be sent to the idle processes.

• Every idle process that receives a task acknowledges that to the
sender, becomes busy and deletes its convergecast tree.

• Every busy process that is not yet part of a convergecast tree sends
any tasks it has to random neighbors.

Problem: in this case several tasks might be directed to an idle process 
at the same time, which is not the case for the previous protocol.

WS 2016 Chapter 10 34



Anycast
Pseudocode of convergecast-pull protocol:

timeout: true →
for any u∈S do

if u.sink=task-in or u.sink=⊥ or
∃v∈S\{u}: v.sink=u.sink then

S:=S\{u}; delete u
else

v:=random(N)
v←pull(u)

if Tasks≠∅ then
if idle then

remove any task from Tasks
idle:=false
delete task-in { deletes relay tree }

else
t:=random(Tasks); Tasks:=Tasks\{t}
if S≠∅ then

v:=random(S)
v←push(t)
S:=S\{v}; delete v {deletes subtree of v }

else
v:=random(N)
v←push(t) 

if idle then
v:=random(N)
v←pull(task-in)

WS 2016 Chapter 10 35

pull(out) →
if |S|<c then

S:=S∪{out}
else

delete out

push(t) →
Tasks:=Tasks∪{t}

Variables used in the protocol:
• task-in: sink of convergecast tree
• Tasks: set of tasks in process
• S: set of relays of convergecast trees

Remark: this protocol is not self-stabilizing.
Why?



Anycast
Pseudocode of convergecast-pull protocol:

timeout: true →
for any u∈S do

if u.sink=task-in or u.sink=⊥ or
∃v∈S\{u}: v.sink=u.sink then

S:=S\{u}; delete u
else

v:=random(N)
v←pull(u)

if Tasks≠∅ then
if idle then

remove any task from Tasks
idle:=false
delete task-in { deletes relay tree }

else
t:=random(Tasks); Tasks:=Tasks\{t}
if S≠∅ then

v:=random(S)
v←push(t)
S:=S\{v}; delete v {deletes subtree of v }

else
v:=random(N)
v←push(t) 

if idle then
v:=random(N)
v←pull(task-in)

WS 2016 Chapter 10 36

pull(out) →
if |S|<c then

S:=S∪{out}
else

delete out

push(t) →
Tasks:=Tasks∪{t}

Problem: Tasks in transit may get deleted
if convergecast tree is deleted!

Maybe, add another primitive that allows
a request to surface at the process where
it cannot be sent any further?



Anycast
General anycast problem: given a predicate p and a 
message M, send M to any process v with p(v)=true.

Solution: load balancing

See also:  Baruch Awerbuch, André Brinkmann, and
Christian Scheideler. Anycasting in Adversarial
Systems: Routing and Admission Control. In Proc. of
ICALP 2003, pp. 1153-1168.

WS 2016 Chapter 10 37



Anycast

Basic assumptions:
• All messages are atomic
• Time proceeds in synchronous rounds
• Only point-to-point connections (links)
• Each link can forward one message per 

round.
• Information exchange between neighbors: 

0 cost
WS 2016 Chapter 10 38



Anycast
Adversarial anycasting model: In each round, the
adversary can
• propose an arbitrary set of directed edges with at most
∆ incoming and outgoing edges per node and

• inject any set of messages.

Goal: compare number of message deliveries
(throughput) with optimal algorithm (OPT)

Algorithm is (c,s)-competitive: reaches c-fraction of
optimal throughput with s times more buffer space per 
anycast address than OPT

WS 2016 Chapter 10 39



Anycast

Basic approach: for every time step t and every
proposed edge (v,w),
• #msgs(v)-#msgs(w)>T: send message
• receive all incoming and injected messages.

WS 2016 Chapter 10 40

v w



Anycast
Original model → option set model:

Original model:
• Each node has a buffer for each anycast address
• Each round the adversary proposes edges

WS 2016 Chapter 10 41

v w



Anycast
Option set model:
• Buffer → virtual node
• Edge → set of virtual edges between

corresponding buffer pairs, only one edge can be
taken by algorithm

WS 2016 Chapter 10 42



Anycast
Anycast approach in option set model:

Balancing algorithm:
For every time step t and every option set S,
• select edge (v,w)∈S with largest #msg(v)-#msg(w)
• #msg(v)-#msg(w)>T: send message along (v,w)
• receive all incoming and injected messages (if not 

possible because the buffer is full: delete any
message), and absorb all messages at destination

Theorem: The balancing algorithm is (1-ε,O(L/ε))-
competitive, where L is the average path length used by 
successful messages in OPT.

WS 2016 Chapter 10 43



Anycast
Proof:
• B: buffer size used by OPT for every anycast

address
• L: average path length used by OPT
• Each message that is successful in OPT has a 

schedule
S=(t0, (t1,e1), (t2,e2),…, (tk,ek))

WS 2016 Chapter 10 44

e1 e2 e3 ek
…



Anycast

Proof (continued):
• OPT has buffer size B: at most B schedules

have their current position at a node
• Balancing algorithm with buffer size H>B:

We distinguish between 3 types of
messages:
– Representatives: on schedule
– Zombies: have no schedule
– Losers: lost contact to schedule

WS 2016 Chapter 10 45



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 46

Edge is used by
balancing algorithm:
representative keeps up

v w



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 47

Edge is used by
balancing algorithm:
representative keeps up

v w



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 48

Edge not used, no loser 
available at w:
turn representative into
loser

v w



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 49

Edge not used, no loser 
available at w:
turn representative into
loser

v w



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 50

Edge not used, but loser 
available at w:
replacement of roles

v w



Anycast
Rules for messages:
• Representatives (green) always try to keep

up with OPT message

Schedule edge offered:

WS 2016 Chapter 10 51

Edge not used, but loser 
available at w:
replacement of roles

v w



Anycast
Rules for messages:
• Zombies only exist at heights H-B+1,…,H
• If zombie below H-B+1: converted into loser
• Messages stored in particular order

WS 2016 Chapter 10 52

losers
zombies
representatives



Anycast

• hv: height of node v (# losers)
• φv: potential of node v

φv = Σ h

• Φ = Σv φv : potential of system

Goal: use potential to bound number of
deleted packets compared to OPT

WS 2016 Chapter 10 53

h=1

hv



Anycast

If T>B+2∆-1:
• Any option set not containing a schedule

edge in OPT does not increase potential
• Case 1: no message moved by BA

WS 2016 Chapter 10 54

v w

no potential change



Anycast

If T>B+2∆-1:
• Any option set not containing a schedule

edge in OPT does not increase potential
• Case 2: message moved: move loser

WS 2016 Chapter 10 55

v w

potential reduces



Anycast

If T>B+2∆-1:
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Case 1: message moved: move rep.

WS 2016 Chapter 10 56

No potential change

v w



Anycast

If T>B+2∆-1:
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Case 2: no message moved

WS 2016 Chapter 10 57

If loser at w, then
switch roles, which
increases potential
by ≤2B+3∆

v w



Anycast

If T>B+2∆-1:
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Case 2: no message moved

WS 2016 Chapter 10 58

If loser at w, then
switch roles, which
increases potential
by ≤2B+3∆

v w



Anycast

If T>B+2∆-1:
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Case 2: no message forwarded

WS 2016 Chapter 10 59

v w

If no loser at w, then
convert representative
into loser, which also
increases potential
by ≤2B+3∆



Anycast

If T>B+2∆-1:
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Case 2: no message forwarded

WS 2016 Chapter 10 60

v w

Exercise: argue, why
bound is correct for
case 2. 



Anycast
If T>B+2∆-1:
• Deletion of injected message (with OPT-

schedule) decreases potential by H-B

WS 2016 Chapter 10 61

v v

The highest loser is converted
into the representative of the
schedule and switches its role
with the highest zombie (which
is charged on the next slide). 



Anycast
If T>B+2∆-1:
• Zombie increases potential by at most H-B
• Happens if zombie is converted to loser (which

happens, e.g., if a loser is moved out of v).

WS 2016 Chapter 10 62

v v



Anycast

If T>B+2∆-1:
• Any option set not containing a schedule

edge in OPT does not increase potential
• Any option set containing a schedule edge

increases potential by at most 2B+3∆
• Deletion of injected message decreases

potential by H-B
• Zombie increases potential by at most H-B
WS 2016 Chapter 10 63



Anycast

Putting it all together:
• p: # option sets with schedule edge
• z: # injected messages without schedule
• d: # deleted messages
• Potential Φ: 

Φ < p(2B+3∆) + z(H-B) – d(H-B)
• s: # injected messages with schedule

p=L⋅s (L: average path length)
WS 2016 Chapter 10 64



Anycast

Hence,

Thus, number of messages delivered by 
balancing algo is at least

H=Ω(L(B+∆)/ε): ~(1-ε)s mgs delivered
WS 2016 Chapter 10 65

d <                    + z
p(2B+3∆)

H-B

(s+z) – ( s                   + z ) – H⋅N
L(2B+3∆)

H-B



Anycast

Our context: clique, in which connections
are chosen at random (instead of by an 
adversary)
→It should be expected that OPT uses short

path lengths (i.e., L=O(log n)). Why?
→Buffer size needed is only by a logarithmic

factor higher than in OPT.

WS 2016 Chapter 10 66



Anycast - Improvements
• Combine load balancing with broadcasting as a second

priority (one primary and many secondary copies). Primary 
copies are dealt with via load balancing and have priority if a 
movement is allowed in the balancing algorithm. Once a copy
makes it to the destination, it needs to invalidate the other
copies (which is doable if a broadcast tree is maintained from
the source).

• On top of a given routing solution, use caching (with a LRU 
(least-recently-used) eviction strategy, for example) to store
anycast information so that it is easier to find processes
belonging to an anycast predicate.

WS 2016 Chapter 10 67



Questions?

WS 2016 68Chapter 10


	Advanced Distributed Algorithms and Data Structures� �Chapter 10: Communication Primitives 
	Overview
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Broadcast
	Overview
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Convergecast
	Overview
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast
	Anycast - Improvements
	Foliennummer 68

