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Overview

• Monitoring
• Information system
• Publish-subscribe system
• Crypto currencies
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Monitoring
Problem variants: 
• determine whether there is a time point where a system predicate is true
• report all time intervals (within a given time frame) at which a system

predicate is true
• evaluate a function over the system state for a given time point

Standard setting: a dedicated process called monitor is collecting information
from all processes in the system

Useful: 
• Logical clocks: use hybrid clocks combined with physical clock

synchronization
• Convergecast: compute intersection of local intervals at which predicates

are true along convergecast tree. Note: number of intervals does not 
increase when computing intersections. Intervals can be sent in order and
merged on their way to the monitor.
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Monitoring

Examples:
• Determine the average degree of the

processes or the total number of connections
in the network at a given time point

• Determine the number of ongoing search
requests in the system at a given time point

• Determine how many processes have joined
or left the network within a given time interval
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Information System
Standard dictionary:
• Every element e is identified by a unique key key(e).
• insert(e): stores e under key(e) in the dictionary (resp. updates the

element previously stored under key(e) to e)
• delete(x): removes element e from the dictionary with key(e)=x
• lookup(x): returns the element e with key(e)=x 

(if such an element exists, and otherwise ⊥)

Challenge: store information among the processes so that following
properties hold:
• Availability: every request can be served in finite time, even under

an adversarial attack
• Integrity: the information returned from a lookup request is correct
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Information System
Challenge: store information among the processes
so that following properties hold:
• Availability: every request can be served in finite 

time, even under an adversarial attack
• Integrity: the information returned from a lookup

request is correct

Useful:
• Consistent hashing: even distribution of data

among processes
• Merkle hash tree: needed for integrity
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Merkle Hash Tree
• Binary search tree T

• A Merkle hash tree is a binary search tree in which
hash values are computed in a bottom-up manner
using a one-way
hash function h

WS 2016 Chapter 10 8

8

5 12

2 7

v w

u h(u)=h(key(u)∘h(v)∘h(w))

h(v) h(w)



Merkle Hash Tree
Storage of Merkle hash tree:

• AL: stores Merkle hash tree (and h)
• TCL: stores h and a digest d:=h(root) (i.e., 

the root hash of the Merkle hash tree)
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Merkle Hash Tree
Processing of insert(e) request:

• AL: sends hash values of search path to the
TCL, computes update of tree, 

• TCL: checks the reported hash values and
updates its digest to the new h(root)
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Merkle Hash Tree
Example: insert(6)

• AL sends hashes of all children of the nodes along
the unique search path in the old tree from the root
to the node below which the new element is
inserted to the TCL (see nodes marked in red)
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Merkle Hash Tree
Example: insert(6)

• The TCL checks bottom-up for every node v along the search
path in the old tree whether h(v)=h(key(v)∘h(w1)∘h(w2)).

• With the digest d the TCL can also check whether d=h(root).
• If all equalities hold, the TCL accepts the hashes, otherwise it

rejects them
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Merkle Hash Tree
Example: insert(6)

• If the hashes are correct, the TCL recomputes the hashes of
the nodes along the search path in the new tree and updates
its digest correspondingly
in our example: it sets d to the new h(8)

• Also the AL updates its hashes in the same way
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Merkle Hash Tree
Processing of delete(k) request:
Assumption: k exists in the tree.

• AL: sends hash values of search path to the TCL 
(like in insert), computes update of tree

• TCL: checks the reported hash values and
updates its digest d to the tree without k
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Merkle Hash Tree
Processing of lookup(k) request:
Assumption: k exists in the tree.

• AL: sends together with the element e with key(e)=k the hash
values of the search path to the TCL (like in insert)

• TCL: checks the reported hash values and accepts e if they
result in its digest
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Merkle Hash Tree
Basic conditions:
• Completeness: For any query q, the AL can

generate an answer-proof pair (a,p) that is
accepted by the TCL.

• Soundness: If, given a query q, an answer-
proof pair (a,p) is accepted by the TCL, then
a is the correct answer to q. 
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Merkle Hash Tree
Completeness:
• For any x with an element e with key(e)=x, the AL can

certainly generate an answer-proof pair accepted by TCL.
Soundness:
• The AL cannot fool the TCL into accepting some element e´

that is not part of T because then there must exist a node v on 
the path with h(v)=h(h(w1)∘h(w2)) 
where h(v) is the correct value
of v but h(w1) or h(w2) is a value
not occurring in the tree. Since
h is a one-way hash function,
the AL cannot do that within
a reasonable time bound.

Problem: what if x is not in T?
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Merkle Hash Tree
Problem: what if x is not in T?

Solution: 
• Include dummy elements with keys –∞ and ∞ in 

T.
• For every element e in T (except ∞), store

(x,succ(x)) together with e in its node in T, where
key(e)=x and succ(x) is the closest successor of x, 
and construct the Merkle hash tree based on 
these pairs.

Proof for some x not in T:
AL delivers (y,succ(y)) which contains x.
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Merkle Hash Tree
Question: Why not just digitally sign every element in T and

publish the public key so that the signature can be checked by
any user?

Answer: Then it would be hard to revoke an element, i.e., it
would open up the possibility of the AL for replay attacks.

Alternatives to Merkle hash trees: 
• RSA accumulators
• Bilinear accumulators
• Multilinear accumulators
These are, in theory, better but expensive in practice!
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Merkle Hash Trees
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Information System
Challenge: store information among the processes
so that following properties hold:
• Availability: every request can be served in finite 

time, even under an adversarial attack
• Integrity: the information returned from a lookup

request is correct

Useful:
• Consistent hashing: even distribution of data

among processes
• Merkle hash tree: needed for integrity
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Classical Hashing
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Classical Hashing

1 3 5 14 1910

14 5 13 19 10

hash table T

Task of a hash function:
Good spreading of elements in T
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Classical Hashing
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hash table T

Good spreading of elements in T:
insert, delete, lookup just need O(1) time
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Distributed Hashing
Hashing also useful for distributed systems:

Problem: set of storage devices as well as their 
capacities can change over time
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Distributed Hashing

Basic Operations:
• insert(e): inserts element e with key key(e)

(which will possibly overwrite previously 
stored information under key(e) )

• delete(k): deletes element e with key(e)=k
• lookup(k): outputs element e with key(e)=k
• join(v): device v joins the system
• leave(v): device v leaves the system
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Distributed Hashing
Requirements:
1. Fairness: Every storage device with c% of the 

overall capacity should get c% of the elements on 
expectation.

2. Efficiency: The computation of the storage location 
should be time- and space-efficient.

3. Redundancy: The copies of an element should be 
stored in different storage devices.

4. Adaptivity: For every change in capacity in the 
system by c%, only O(c%) of the elements should 
be replaced to preserve properties 1-3.

Uniform storage systems: consistent hashing



Consistent Hashing
Two problems:
1. How to map the elements to the processes?

2. How to interconnect the processes?
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Consistent Hashing
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Consistent Hashing
• V: current set of processes
• succ(v): closest successor of v in V w.r.t. hash function h

(where [0,1) is viewed as a cycle)
• pred(v): closest predecessor of v in V w.r.t. h

Assignment rules:
• One copy per element: process v stores all elements e

with g(key(e))∈I(v), where I(v)=[h(v), h(succ(v))).
• k>1 copies per element: e is stored in the above node v

and its k-1 closest successors w.r.t. h
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Consistent Hashing
Operations:
• join(v): determine interval I(v) of v and inform the 

predecessor of v to transfer those elements to v
that now belong to v

Example: v=9
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Consistent Hashing
Operations:
• leave(v): move all elements in v to its closest 

predecessor w
Example: v=8

2 5 3 8 7 1 4 6 2

0 1
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0 1
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Consistent Hashing
Consistent hashing works well for processes of uniform capacities.

Theorem 11.1:
• Consistent hashing is efficient and redundant.
• Every process stores on expectation 1/n of the elements, i.e., 

consistent hashing is fair for uniform capacities.
• Whenever a process joins or leaves, on expectation just a 1/n-

fraction of the elements gets replaced
Proof:
Efficiency and redundancy: see the protocol
Fairness: 
• For any choice of h it holds that Σv∈V |I(v)| = 1 and therefore 

Σv∈V E[|I(v)|] = 1 (E[]: expectation).
• Given that h is drawn uniformly at random from the set H of all 

possible hash functions, then for every pair v,w∈V there is a 
bijection on H, f:H→H, so that for all h∈H, |I(v)| w.r.t. h = |I(w)| w.r.t. 
f(h). Hence, E[|I(v)|] = E[|I(w)|].

• Combining the two equations results in E[|I(v)|] = 1/n for all v∈V.
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Consistent Hashing
Theorem 11.1:
• Consistent hashing is efficient and redundant.
• Every process stores on expectation 1/n of the elements, i.e., 

consistent hashing is fair.
• Whenever a node joins or leaves, on expectation just a 1/n-fraction

of the elements gets replaced

Problem: deviation from 1/n too high!

Possible solutions:
• use Θ(log n) hash functions for the processes

(i.e., every process has Θ(log n) points in [0,1) ).
• combine consistent hashing with linear probing, i.e., an element is

moved forward along the successors until a process with a load of
less than c⋅m/n for some constant c>1 is found, where m is the
current number of elements

But make sure that the redundancy requirement is still preserved!



Consistent Hashing
Two problems:
1. How to map the data to the processes?

2. How to interconnect the processes?
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Publish-Subscribe System
A publish-subscribe system (short, P/S system) has
to provide the following basic operations:
• subscribe(v,x): process v joins subscriber group x
• unsubscribe(v,x): process v leaves subscriber

group x
• publish(m,x): send message m to all members of

subscriber group x

Standard assumption: process v can only publish
something in group x if it belongs to group x.
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Publish-Subscribe System
Strategy A: for each group x that a process v has subscribed to, 
v maintains the set of all processes that currently belong to
group x (i.e., each subscriber group forms a clique).

Realization of operations:
• subscribe(v,x): Process v contacts a member of group x to

join it. For the integration, the Build-Clique protocol is used.
• unsubscribe(v,x): Process v leaves the clique representing

group x.
• publish(m,x): The processes use one of the proposed

broadcast protocols to spread message m to all members of
subscriber group x.

Problem: high work overhead for subscribe and unsubscribe.
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Publish-Subscribe System
Strategy B: every process v only remembers the group IDs that it
has subscribed to, but nothing beyond that.

Realization of operations:
• subscribe(v,x): Process v adds x to its list of subscriber

groups.
• unsubscribe(v,x): Process v removes x from its list of

subscriber groups.
• publish(m,x): Send message m to all members of subscriber

group x.

Problem: A publish request has to be broadcast to all processes
in the system to make sure that it reaches all processes of its
group.
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Publish-Subscribe System
Strategy C: For each group x that a process v has subscribed to, 
v only maintains a neighborhood of fixed size d of processes that
currently belong to group x. This neighborhood is continuously
refreshed using the random-neighbor introduction strategy in the
Build-D2G protocol. This should make sure that a subscriber
group forms a random graph of degree d.

Realization of operations:
• subscribe(v,x): Process v contacts a member of group x to

join it, and this member introduces v to its neighbors.
• unsubscribe(v,x): Process v leaves the graph representing

group x (using a strategy similar to the clique).
• publish(m,x): The processes use one of the proposed

broadcast protocols to spread message m to all members of
subscriber group x. 
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Publish-Subscribe System
Problem: how to ensure that all publish requests for group x have been
received a group member v?

Solution: use extension of median rule.

We assume:
• Each publish request p is identified by a unique key key(p).
• The publish requests that have already been received by process v form the

sequence (p1,p2,…,pk). Interpret this as a number p(v) = 0.key(p1)∘key(p2)∘
… ∘key(pk) ∈ [0,1]. If clear from the context, p(v) may also represent the
publication sequence implied by it.

Extension of median rule:
• In each round, each process u contacts two other processes, v and w, 

uniformly at random and sets p´(u):=median(p(u),p(v),p(w)).
• Afterwards, u appends all publications in {p(u),p(v),p(w)} that are not part of

p´(u) in any order to the end of p´(u) and stores the result in p(u).
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Publish-Subscribe System
Extension of median rule:
• In each round, each process u contacts two other

processes, v and w, uniformly at random and sets
p´(u):=median(p(u),p(v),p(w)).

• Afterwards, u appends all publications in 
{p(u),p(v),p(w)} that are not part of p´(u) in any order to
the end of p´(u) and stores the result in p(u).

To clarify:
• How to efficiently compute p´(u).
• How to efficiently find all publications not in p´(u).
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Publish-Subscribe System
Efficient computation of p´(u):
• Store p(v)=(p1,p2,…,pk) in a balanced binary search

tree in which (p1,p2,…,pk) is the result of an in-order 
traversal.

Examples for sequences of length 1 to 5:
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Publish-Subscribe System
Efficient computation of p´(u):
• Store p(v)=(p1,p2,…,pk) in a balanced binary search

tree in which (p1,p2,…,pk) is the result of an in-order 
traversal.

Examples for sequences of length 6 to 8:
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Publish-Subscribe System
Efficient computation of p´(u):
• Compute node hashes like in a Merkle hash tree and use the

AL↔TCL approach to check hashes.
• Use the node hashes to determine the length of the largest

common prefix lcp1 of p(u) and p(v) as well as lcp2 of p(u) and
p(w). (The one-way hash function guarantees that if the node
hashes are identical, then also the publications in the
corresponding subtrees are identical and have the same 
order.)

• Let x1(u) be the digit at place lcp1+1 in p(u), x(v) be the digit at 
place lcp1+1 in p(v), x2(u) be the digit at place lcp2+1 in p(u), 
and x(w) be the digit at place lcp2+1 in p(w).

• With lcp1, lcp2, x1(u), x2(u), x(v), and x(w) we can determine
the prefix of p´(u) till lcp1 resp. lcp2.
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Publish-Subscribe Systems
Efficiently finding publications not in p´(u):
• Transfer all publications p in p(v) beyond the common

prefix of p(v) and p(u) and all publications p in p(w) 
beyond the common prefix of p(u) and p(w) to u. 
Determine which are not contained in p´(u) and
append them to p´(u) if so.

Usually, the missing postfixes should be short (just O(log 
n)) if at most one publish request is initiated for a 
subscriber group in each round since, due to the median 
rule, it takes at most O(log n) rounds to spread it to all 
other processes and at most O(log n) rounds for it to find 
its fixed place in the order of publish requests.
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Crypto Currency
Problem: maintain a record of all transactions so that the
balance of every user can be uniquely determined

Solution:
1. Every transaction must be authorized by the source of the

transaction.
2. The authorized transactions are ordered using the extension

of the median rule (based on the Merkle hash tree).
3. Transaction committed: its order has remained unchanged

for O(log n) many rounds (see the conjecture on the
robustness of the median rule if output is based on log of
length O(log n) in Chapter 7).

4. Store committed transactions in a distributed fashion so that
no process has to store all transactions.
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Crypto Currency

1. Autorization of transaction:
The source and sink sign it with their private 
keys. 

TCM model: the private key is stored in the
TCL. For the signature, the TCL should offer
an interface to the user that is not going
through the AL to avoid fake transactions.
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Crypto Currency
4. Distributed storage of committed transactions:
• Use the trusted information system described

previously (redundant storage with consistent
hashing combined with Merkle hash trees for local
checking), where the key of a transaction is its
order in the transaction sequence.

• Also store the hashes of the Merkle hash tree of
the transactions so that the validity of a single
transaction can be checked efficiently.

• Validating the balance of a single user: store the
number of the previous transaction and the new
balance with each transaction.
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Extensions
Transactions in distributed computing:
Use a similar approach as in crypto currencies: 
• First, wait until the order of transaction T has been committed (via 

extended median). 
• Then do calculations based on that order at the corresponding

processes and report back to the initiator. 
• If the initiator correctly receives all reports in a timely manner and

also all transactions before T have been committed (or have been
undone) in a timely manner, it issues a commit(T). Otherwise, it
issues an undo(T). It then has to start another transaction attempt.

• Once this commit has been committed (via extended median), the
processes apply the results of their calculations to their state. 

• With this approach, no state rollback is needed, but it may happen 
that processes do calculations in vein.
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Questions?
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Information System
Outsourcing of information and computation to

untrusted third parties is becoming more and
more common (→ Cloud Computing)

Benefit: much more effective use of resources
Problem: output verification
WS 2016 Chapter 10 53

Service Provider

Users



Information System

Scenario I:
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Information System
Scenario II:

General approach:
• Data is authenticated by source (scenario I) or user

(scenario II) via a so-called digest (compressed info
about data) but managed by the untrusted server

• User requests proof that answer from server is correct
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Information System
Scenario II:

Basic difference between scenario I and II:
• Scenario I: digest to check integrity of data is made

publicly available by source
• Scenario II: digest to check integrity of data is kept

private (at user)
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Information System
Our scenario (TCM model):

• TCL: stores digest, verifies integrity of data
• User: stores data and provides a proof for any

request that answer is correct
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