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Overview

• Graph theory
• Classical graph families
• Fundamental graph parameters
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Graph Theory
Definition 2.1: A graph G=(V,E) consists of a node 

set V and an edge set E.
• G undirected: E ⊆ { {v,w} | v,w∈V}
• G directed: E ⊆ { (v,w) | v,w∈V}
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Graph Theory

In our case: graph represents knowledge or
connections between processes
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C knows D
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Graph Theory
Definition 2.2: Let G=(V,E) be a graph.
• G undirected: degree of v∈V: 

δ(v)=|{ w∈V | {v,w} ∈ E}| 
• G directed: degree of v∈V: 

δ(v)=|{ w∈V | (v,w) ∈ E}|
Degree of G: ∆ = maxv∈V δ(v)
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Graph Theory
Degree: corresponds to update costs for 

processes if the set of processes changes.

Degree should not be too high.
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Graph Theory
Definition 2.3: Let G=(V,E) be a graph. An edge 

sequence p=(e1,e2,…,ek) in G is called a path if 
there is a node sequence (v0,…,vk) with

• G undirected: ei={vi-1,vi} for all i∈{1,…,k}
• G directed: ei=(vi-1,vi) for all i∈{1,…,k}
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Graph Theory

Definition 2.4: A graph G=(V,E) is called
• connected if G is undirected and for all node 

pairs v,w∈V there is a path from v to w in G.
• weakly connected if G is directed and for all 

node pairs v,w∈V there is a path from v to w
in the undirected version of G.

• strongly connected if G is directed and for all 
node pairs v,w∈V there is a (directed) path
from v to w in G.
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Graph Theory

Examples:
(1) Graph is only weakly connected

(2) Graph is strongly connected
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Graph Theory
Definition 2.5: Let G=(V,E) be a graph and p=(e1,e2,…,ek) 

be a path from v to w in G. 
• Length of p: |p|=k
• Distance of w from v: d(v,w) = min. path length from v to 

w ( d(v,w) = ∞ if there is no path from v to w)
• Diameter of G: D(G)=maxv,w∈V d(v,w)
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Graph Theory
Diameter: lower bound for worst-case time 

(measured in number of communication rounds) 
for access to a process 

Diameter should not be too high.
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Graph Theory
Definition 2.6: Let G=(V,E) be a graph. 
• Γ(U): neighbor set of a node set U⊆V, i.e.,

Γ(U)= { w∈V\U | there is a v∈U with {v,w}∈E (resp. 
(v,w)∈E in the directed case) }

• α(U) = |Γ(U)| / |U|: expansion of U
• α(G) = minU⊆V,1≤|U|≤⌈|V|/2⌉ α(U): expansion of G
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Graph Theory
Expansion: k failures ⇒at most k/α(G) nodes get 

disconnected from rest of the graph

Proof: Let U be set of all non-failing nodes that get 
disconnected due to failed nodes. Then all nodes in 
Γ(U) failed, i.e., |Γ(U)|≤k. Moreover, α(U)≥α(G) and 
α(U)=|Γ(U)|/|U|, so |U|≤k/α(G).
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Graph Theory
Expansion: k failures ⇒at most k/α(G) nodes get 

disconnected from rest of the graph

Expansion should be as high as possible
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Graph Theory
In the following we consider classical families of 

graphs G={G1, G2, …}.
Example: Family of linear lists

We say: graph G from a family G has constant 
degree if the degree of all graphs in G is 
upper bounded by a constant.

G1 G2 G3

….
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Graph Theory
In the following we consider classical families of 

graphs G={G1, G2, …}.
Example: Family of linear lists

For a graph G from G we use
• n: number of nodes (resp. size) of G
• m: number of edges of G

G1 G2 G3

….
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Classical Graph Families
Complete graph / clique: every node is connected 

to every other node

Advantage: low diameter, high expansion
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Classical Graph Families
Complete graph / clique: every node is connected 

to every other node

Problem: high degree!  ( δ(v)=n-1 for all v )
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Linear List

• Degree 2 (minimal for connectivity), BUT
• Diameter is bad ( D(List)=n-1 )
• Expansion is bad ( α(List)≈2/n )

How to obtain a small degree and diameter?
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Complete Binary Tree

• n=2k+1-1 nodes when depth is k∈ℕ0
• degree is 3
• Diameter is 2k ≈ 2 log2 n, BUT
• Expansion is bad ( α(Baum)≈2/n )

A B
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2-dimensional Grid

• n = k2 nodes when there are k nodes along 
each side, maximal degree 4

• Diameter is 2(k-1) ≈ 2  n
• Expansion is ≈2/  n
• Not bad, but can we do better?
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d-dimensional Hypercube

• Nodes: (x1,…,xd) ∈ {0,1}d

• Edges: ∀i: (x1,…,xd) → (x1,..,1-xi,..,xd)

d=1 d=2 d=3
Degree d, diameter d, expansion ≈1/  d
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d-dimensional de Bruijn Graph

• Nodes: (x1,…,xd) ∈ {0,1}d

• Edges: (x1,…,xd) → (0,x1,x2,…,xd-1)
(1,x1,x2,…,xd-1)
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Diameter

Theorem 2.7: Every graph of maximal degree 
δ>2 and size n has a diameter of at least
(log n)/(log(δ-1))-1.

Proof: exercise

Theorem 2.8: For all even δ>2 there is a family 
of graphs of maximal degree δ and size n
with diameter at most (log n) / (log δ -1).

Proof: exercise
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Expansion
Theorem 2.9: For every graph G it holds that α(G)∈[0,1].
Proof: see the definition of the expansion α(G).

Theorem 2.10: There is a family of graphs with constant
degree and constant expansion.

Example: Gabber-Galil Graph
• Node set: (x,y) ∈ {0,…,k-1}2

• (x,y) → (x,x+y),(x,x+y+1), (x+y,y), (x+y+1,y)  (mod k)
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Questions?
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