Advanced Distributed Algorithms and Data Structures

Prof. Dr. Christian Scheideler
University of Paderborn, WS 2016

3 Probability Theory

3.1 Basic definitions in probability theory

Consider an arbitrary discrete random experiment (like throwing a coin), and let Q = {w;,wq, ws, ...} be the sample
space, i.e., the set of all outcomes of this random experiment.

e An event is an arbitrary subset of €2, and
e event A is true for some outcome w € €2 if and only if w € A.

The function p : © — [0, 1] is called a probability distribution over the sample space if and only if > _, p(w) = 1. In
this case, (€2, p) forms a probability space. p naturally extends to events in a sense that for all events A C  we define
p(A) =3 ,cap(w). When pis clear from the context, we will use Pr[-] instead of p(-). The requirements on a probability
space imply the following principle.

Theorem 3.1 (Inclusion-Exclusion Principle) Ler A1, ..., A, be an arbitrary collection of events. Then it holds that
n n k
Pr J A =) (-1 ST Pr[() 44
1=1 k=1 11 <12<... <1 7j=1

Important special cases of this theorem are the so-called Boole’s inequalities:
o PrlUiL, Ai] < 307, PrlA]
o PrlUiL; A = 3001 Pr(Ad] = 31y, Pr[Ai 0 4]

3.2 Conditional probability
The conditional probability that the event B is true under the assumption that A is true is given by

Pr[AN B|

PB | A = =5

From this it follows that
Pr[AN B] = Pr[A] - Pr[B | 4]

and, in general,

PI‘[Al ﬁﬁAn] = HPT[Az | A1 ﬂ...ﬂAi_l]
i=1
Since
Pr[AnN B] = Pr[A] - Pr[B | A] = Pr[B] - Pr[A | B]
we obtain Bayes’ formula:
Pr[A] - Pr[B | A]
Pr[A|B] = —————

Two events A and B are



e independent if Pr[B | A] = Pr[B],
o negatively correlated if Pr[B | A] < Pr[B], and
e positively correlated if Pr[B | A] > Pr[B].

According to Bayes’ formula these properties are symmetric. Hence, for independent events, Pr[A N B] = Pr[A] - Pr[B].
Suppose that the sample space {2 can be represented as 2 = €2y X ... x ), with probability distributions p; : 1 —
[0,1],...,pk : Q% — [0, 1] so that for each outcome w = (wy, ..., wy) € § it holds that Prw] = Hlepi(wi). Then it is
easy to show that the outcomes for different subspaces €); are independent and therefore, events over different subspaces
are independent. That is, for arbitrary events A; C Q; and Ay C Qs it holds for A] = Ay x Q3 and A, = Q; x A that

Pr[A] N A}] = Pr[A]] - Pr[A)] .

Example: balls into bins

Suppose that we have n balls and n bins. Consider the random experiment that every ball is thrown uniformly and
independently at random into one of these bins.

Theorem 3.2 The probability that bin 1 contains at least one ball is at least 1/2.

Proof. In our case, the sample space €2 can be represented as 2 = Qq x ... x Q, with Q; = {1,...,n} and probability
distributions p; : Q; — [0, 1] with p;(w) = 1/n for all w € §; (because the balls are thrown uniformly at random). Also,
for any outcome w = (wy, ..., w,) € Qitholds that Pr[w] = []!"_, pi(w;) (because the balls are thrown independently at
random). Let A; be the event that ball ¢ is thrown into bin 1. Then it holds that Pr[A;] = 1/n and therefore, Pr[A; N A;] =
Pr[A;] - Pr[A;] = 1/n? for all i # j. Thus,

n

Pril JAi] > iPr[Ai]— > Pr{AinAj]
i=1 i=1 1<i<j<n
"1 1
=2 2w
i=1 1<i<j<n

n\ 1 11
= 1-()=>1-2==
2) n? 2 2

Note that the exact value of the probability is 1 — (1 — 1/n)™ =1 —1/e for n — oo.

3.3 Random variables

A function X : Q — R is called a random variable. If X : Q — {0,1}, we call X a binary random variable or simply
indicator. In order to simplify notation, we define

PriX =z] = Pri{w € Q: X(w) = z}]
Analogously,
PriX <z]=Pr{w e Q: X(w) <z}] und Pr[X >z]=Pr{weQ: X(w)> z}]

For two random variables X and Y we say that X stochastically dominates Y if and only if Pr[X > z] > Pr[Y > 2] for
all z.



3.4 Expectation

The expectation of a random variable X : 2 — R is defined as

E[X] =) X(w) - Prfu]

wenN
Therefore, also E[X] =} v (o)« - Pr[X = z]. For the special case that X : 2 — N, we obtain
E[X] =) Pr[X > 1]
z€N

and for an indicator X, E[X] = Pr[X = 1]. Basic properties of the expectation are:

e X is non-negative: E[X] >0

o [E[X]| < E[|X]]

e Elc- X] =c-E[X]

e E[X + Y] = E[X] + E[Y], which is also known as the linearity of expectation.
Two random variables X and Y are (stochastically) independent if for all x,y € R it holds that

PriX =2 |Y =y]=Pr[X = 2]

Theorem 3.3 If X and Y are stochastically independent, then E[X - Y] = E[X] - E[Y].

The proof is an exercise.

3.5 Probability bounds

The most basic probability bound is the following:
Theorem 3.4 For any random variable X,

Pr[X <E[X]]<1 and Pr[X >E[X]] <1

Sometimes, this theorem already suffices to prove the existence of certain outcomes as demonstrated by the following

example.

Example: MaxCUT

Let G = (V, E) be an undirected graph. For a subset U C V we call U = V' \ U the complement of U and

(U, U)={{v,w} e ElvelU AN weU}

the cut separating U from U in G. In the MaxCUT problem we are given a graph G = (V, E), and the task is to find a

subset U C V that maximizes |(U, U)|.

Theorem 3.5 For every undirected graph G = (V, E) with m edges there is a cut of size at least m /2.

Proof. Suppose that we toss a coin independently for each node in V' with Pr[heads] = Prltails| = 1/2. All nodes with
outcome "heads” are assigned to U and all other nodes are assigned to U. For each edge e = {v,w} € E let the binary
random variable X be 1 if and only if e € (U, U). Since the outcomes of the coin tosses for v and w are independent,

Pr[X. = 1] = Pr[(heads,tails)] 4+ Pr[(tails,heads)] = 1/44+1/4 =1/2.
Let X be the size of the cut (U, U). Then it holds that X = Y, X, and therefore,

EX] =) E[X]=m-1/2=m/2.



From Theorem 3.4 it follows that there is a cut of size at least m/2. a

Often concrete probability bounds are needed for the deviation from the expectation. The most well-known inequality
for this is Markov’s inequality.

Theorem 3.6 (Markov’s Inequality) Let X be an arbitrary non-negative random variable. Then it holds for all k > 0

that

Pr[X > k] < @

Proof.
EX]= > a-PrX=z]> >  x-PrX=2a]>k Pr[X >k
zeX () zeX (), 2>k

This inequality can be generalized in the following way.

Theorem 3.7 (General Markov’s Inequality) Let X be an arbitrary random variable and g be an arbitrary function that
is non-negative and monotonically increasing on the values in X (SY). Then it holds for all k € X () that

E[g(X)]
Pr[X > k] < (R
Proof.
Elg(X)]= Y  glx)-Pr[X =2a]> g(x) - Pr[X = z] > g(k) - Pr[X > k]
zEX(Q) TEX(Q),2>k

O

From the Markov inequality we can also derive the well-known Chebychev inequality. The variance of a random
variable X is defined as V[X] = E[(X — E[X])?].

Theorem 3.8 (Chebychev’s Inequality) Let X be an arbitrary random variable. For all k > 0,

V[X]
kZ

Pr{X —E[X]| > k] <
Proof. From the Markov inequality it follows that
Pr[|X| > k] = Pr[X? > k*] < E[X?]/k?
Substituting X by X — E[X] results in the theorem. O

More powerful inequalities are the so-called Chernoff bounds.

Theorem 3.9 (Chernoff Bounds) Let X1, ..., X, be independent binary random variables. Let X = " | X; and
w = E[X]. Then it holds for all § > 0 that

) I
PY[X > (1 + (5)#] < <(1+65)1+5> < 6—52M/(2(1+5/3)) <e~ min{62,6}1/3

and for all 0 < § < 1 that
e 9 K 52
< (1— <= ) < p0n/2
PriX <(1-0)yu] < ((1 — 5)1—5> <e



Proof. We will only show the first inequality. Let p; = Pr[X; = 1] = E[X,] for all i. According to the Markov inequality
it holds for every function g(z) = €% with h > 0 and every § > 0 that

Pr(X > (1+6)u] < e " ElehX] (1)
Since X1, ..., X,, are independent, it follows from Theorem 3.3 that
Ele"X] = E[ehXit X)) = Bleh X1 ehXa] = [T BlehX]

n

= H(pieh +(1—pi) =TT, 1 +pi(eh = 1))

n

< Hep"'(eh_l) since 1 + x < e® forall
i=1
N
Together with inequality (1) this implies that
PriX > (1+6)u] < e~h(F+n  ou(e"=1) _ o=(1+h(1+8)=e"u 2)

The right hand side of (2) is minimal for h = hy with hg = In(1 + 0). Inserted into (2) we obtain

— . 66 u
Pr[X > (1+8)u] < (148) 1+0m. b = <<1+5)1+6)

The inequality for Pr[X < (1 — d)u] is an exercise. O

For more details on probability theory see, for example, [1].
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