
Advanced Distributed
Algorithms and Data Structures

Chapter 4: Link Primitives

Christian Scheideler
Institut für Informatik

Universität Paderborn

Overview

• Model and basic primitives
• Universality
• Safe primitives

WS 2016 2Chapter 4

Model and Basic Primitives

A knows (IP address, MAC address,… of) resp. has access
autorization for B : network can send message from A to B

High-level view:
A knows B ⇒ overlay edge (A,B) from A to B (A B)

Set of all overlay edges forms directed graph known as overlay
network.

A B
Communication network

(Internet, ad-hoc network,…)

WS 2016 Chapter 4 3

Model and Basic Primitives
• Overlay network established by processes:

• Graph representation:

• Edge A → B means: A knows / has access to B

nodes

edges

WS 2016 Chapter 4 4

Model and Basic Primitives
• Edge set EL: set of pairs (v,w) where v knows w

(explicit edges).

• Edge set EM: set of pairs (v,w) with a message in transit to v
containing a reference to w (implicit edges).

• Graph G=(V,EL∪EM): graph of all explicit and implicit edges.

v w

v w

WS 2016 5Chapter 4

v :w

v :w

Model and Basic Primitives
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

v w
M3 M2 M1

t0:

v w
M2

t1:

v w
M1

t2:

v w
M3

t3:

WS 2016 6Chapter 4

Model and Basic Primitives
Fundamental goal: topology of process graph

(i.e., G) is kept weakly connected at any time

Fundamental rule: never just „throw away“ a
reference!

B

A

WS 2016 7Chapter 4

Model and Basic Primitives
Admissible rules for weak connectivity:
• Introduction:

u introduces w to v by sending a message to v
containing a reference to w

• special case: u introduces itself to v

u
v

w
u

v

w

u u vv

WS 2016 8Chapter 4

Model and Basic Primitives
Admissible rules for weak connectivity:
• Delegation:

u delegates its reference of w to v (i.e., afterwards it
does not store a reference of w any more)

• Fusion:

u
v

w
u

v

w

u u vv

WS 2016 9Chapter 4

Model and Basic Primitives
Admissible rules for weak connectivity:
• Reversal:

u sends a reference of itself to v and deletes v´s reference

Remarks:
• Advantage: rules can be executed in a local, wait-free manner

in arbitrary asynchronous environments
• Introduction, delegation and fusion preserve strong

connectivity

u u vv

WS 2016 10Chapter 4

Universality

Theorem 4.1: The 3 primitives below are weakly universal, i.e.,
they can be used to transform any weakly connected graph
G=(V,E) into any strongly connected graph G´=(V,E´).

WS 2016 Chapter 4 11

u
v

w
u

v

w

u
v

w
u

v

w

introduction:

delegation:

fusion: u u vv

Universality

Proof: consists of two parts
1. Using the introduction rule, one can get from any

weakly connected graph G=(V,E) to the clique.

u
v

w
u

v

w
introduction:

G clique

WS 2016 12Chapter 4

Universality
How does that work?

Consider any two nodes v and w. Since G is weakly
connected, there is a path from v to w.

Exercise: If in each round every node introduces all of its
neighbors and itself to all of its neighbors, then just
O(log n) rounds are needed till the clique is reached.

v
w

WS 2016 13Chapter 4

Universality
Proof:
2. Using the delegation and fusion primitives, one can get

from the clique to G´=(V,E´).

u
v

w
u

v

w
delegation:

u u vvfusion:

clique G´

WS 2016 14Chapter 4

Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´.
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.

WS 2016 Chapter 4 15

u
wv

shortest path p in G´

Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´.
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.

• Then node u delegates (u,w) to v, i.e., (u,w) is transformed into
(v,w).

WS 2016 Chapter 4 16

u
v w

shortest path p in G´

Universality
Proof: (details)
2. Suppose that G=(V,E) is a clique. Then G can be transformed into

G´=(V,E´) in the following way without ever dropping edges of G´.
• Let (u,w) be an arbitrary edge that needs to be removed because it

is not in E´. Since G´=(V,E´) is strongly connected, there is a
directed path from u to w in G´. Let p be a shortest such path and
let v be the next node along this path.

• Then node u delegates (u,w) to v, i.e., (u,w) is transformed into
(v,w).

• After at most n-2 further delegations along p, the edge can be
fused with an edge in G´. Doing that for all (u,w)∉E´, we get G´.

WS 2016 Chapter 4 17

u
v w

shortest path p in G´

Universality
Theorem 4.2: The 4 rules below are universal in a sense that

one can get from any weakly connected graph G=(V,E) to any
other weakly connected graph G´=(V,E´).

u
v

w
u

v

w

u
v

w
u

v

w

u u vv

u u vv

WS 2016 18Chapter 4

Universality
Theorem 4.2: The 4 rules below are universal in a sense
that one can get from any weakly connected graph
G=(V,E) to any other weakly connected graph G´=(V,E´).
Proof:
• Let G´´=(V,E´´) be the bidirected version of G´, i.e., for

all (u,v)∈E´, (u,v)∈E´´ and (v,u)∈E´´.
• Certainly, G´´ is strongly connected. (Why?)
• Theorem 4.1: we can get from G to G´´.
• From G´´ to G´: use reversal and fusion rule to remove

wrong directions:

WS 2016 Chapter 4 19

u u vv u v

Universality
Remark:
• Each of the four rules is necessary for universality.

– Introduction: only one that generates new edge
– Fusion: only one that removes edge
– Delegation: only one that moves edge away
– Reversal: only one that makes nodes unreachable

• Theorems 4.1 and 4.2 only show that in principle
it is possible to get from any weakly connected
graph to any other weakly resp. strongly
connected graph.

• Later, we will see distributed algorithms for that.

WS 2016 20Chapter 4

Safe Primitives
Recall the definition of the introduction rule:

u introduces w to v by sending a message to v
containing a reference to w

This violates w´s right to decide who shall connect to it.
(But self-introduction is fine.)

u
v

w
u

v

w

WS 2016 21Chapter 4

Safe Primitives
Same problem with delegation:

But fusion and reversal are fine:

u
v

w
u

v

w

u u vv

WS 2016 22Chapter 4

u u vv

Safe Primitives

How to obtain safe forms of introduction and
delegation?
→Use the concept of relays ()
Extension of picture with relays:

WS 2016 Chapter 4 23

u
v

w
u

v

w

Safe Primitives

Safe introduction:

Instead of introducing w to v, u can only
introduce its relay to w to v.

WS 2016 Chapter 4 24

u

v

w

u

v

w

Safe Primitives

Safe introduction:

Once the reference of relay r to w is received
by v, it is tied to a new relay r´ at v pointing to r.

WS 2016 Chapter 4 25

u

v

w

u

v

w
rr

r´

Safe Primitives

Safe introduction:

No access rights violated: u could have just
forwarded anything from v to w by itself.

WS 2016 Chapter 4 26

u

v

w

u

v

w
r

r´

Safe Primitives

Safe introduction:

Most importantly, if u kills its relay to w, also
v´s connection to w is gone.

WS 2016 Chapter 4 27

u

v

w

u

v

w
r

r´r´

Safe Primitives
Safe introduction:

→ Principle of least exposure: when killing all
relays with incoming links, no request can
reach a node any more

WS 2016 Chapter 4 28

u

v

w

u

v

w

r´r´

Safe Primitives
Possible outcome of safe introductions:

Remarks:
• Whenever a reference of some relay r is received, the Trusted

Communication Layer (TCL) automatically creates a local relay r´ pointing to
r and forwards r´ to the corresponding process instead. Thus, processes
only have references to local relays.

• Any relay that is created by a process (not the TCL) is a sink relay (see v),
i.e., all messages sent to it will be forwarded to the process owning it.

• Any one of the processes between u and v can send a message to v, but
only v will ever see them since the TCLs of the other processes directly
forward the messages (i.e., the TCL acts like a bridge).

WS 2016 Chapter 4 29

u v

Safe Primitives
Possible outcome of safe introductions:

In our old graph terminology, the corresponds to the
following connections (though there are now depen-
dencies among them):

WS 2016 Chapter 4 30

u v

Safe Primitives
Another possible outcome of safe introductions:

WS 2016 Chapter 4 31

u v

Safe Primitives
Relay graph G=(V,EL∪EM):
• V=R∪P, where R is the set of relays and P is the set of processes
• EL (explicit edges): set of edges (v,w) where either (v∈P and w∈R),

or (v∈R and w∈R), or (v∈R and w∈P)

• EM (implicit edges): set of edges (v,w) where v∈P and w∈R, which
represents a message in transit to v with a reference to relay w

WS 2016 32Chapter 4

r v

v w v w

r v

Safe Primitives
A relay graph G=(R∪P,EL∪EM) is called
• weakly connected if for all pairs v,w∈P

there is a path from v to w in G when
ignoring the directions of the edges

• strongly connected if for all pairs v,w∈P
there is a directed path from v to w in G

WS 2016 Chapter 4 33

Safe Primitives
Safe introduction:

Certainly, safe introduction preserves weak (and
strong) connectivity in relay graphs as this only adds
an edge to G.
WS 2016 Chapter 4 34

u

v

w

u

v

w

Safe Primitives
Safe reversal:

u safely introduces relay s to the process owning the
sink relay of r and drops r (if r has no incoming links).
Exercise: safe reversal preserves weak connectivity
WS 2016 Chapter 4 35

u v

…

…

u v

…

r
s s

…

Safe Primitives
Safe fusion:

Whenever two relays (here, r and r´) of a process
(here, u) point to the same sink relay (here, s), one
of them can be dropped. Certainly, safe fusion
preserves weak and strong connectivity.
WS 2016 Chapter 4 36

r

v

u
r´

s
r

v

u

s

Safe Primitives
Safe fusion:

Remark: The TCL only tells processes whether two
references point to the same relay or not (not to the
same process). This allows processes to maximize
anonymity since different relays can be used for
different tasks.
WS 2016 Chapter 4 37

r

v

u
r´

s
r

v

u

s

Safe Primitives
Theorem 4.3: Safe introduction, fusion, and reversal are universal in a
sense that one can get from any weakly connected relay graph
G=(R∪P,E) to any other weakly connected relay graph G´=(R∪P,E´)
(where w.l.o.g. E and E´ consist solely of explicit edges).
Proof:
• For any process v∈P let R(v) be the set of all relays local to v.
• Let G1=(P,E1) be the graph where (w,v)∈E1 if and only if there is an

edge (r,s)∈E with r∈R(v) and s∈R(w). Define G2=(P,E2) in the same
way for E´.

WS 2016 Chapter 4 38

v w

r s
v w

Safe Primitives
Theorem 4.3: Safe introduction, fusion, and reversal are universal in a
sense that one can get from any weakly connected relay graph
G=(R∪P,E) to any other weakly connected relay graph G´=(R∪P,E´)
(where w.l.o.g. E and E´ consist solely of explicit edges).
Proof:
• For any process v∈P let R(v) be the set of all relays local to v.
• Let G1=(P,E1) be the graph where (w,v)∈E1 if and only if there is an

edge (r,s)∈E with r∈R(v) and s∈R(w). Define G2=(P,E2) in the same
way for E´.

First, we show how to emulate the standard introduction and delegation
rules by our safe rules. The remaining proof then proceeds in three
parts:
1. Transform G into G1.
2. Transform G1 into G2.
3. Transform G2 into G´.

WS 2016 Chapter 4 39

Proof of Theorem 4.3
Emulation of introduction rule (u introduces w to v):

First, u introduces w to its relay to v (using the safe
introduction rule).

WS 2016 Chapter 4 40

u

v

w

u

v

w

Proof of Theorem 4.3
Emulation of introduction rule (u introduces w to v):

Then w establishes a new relay r, sends its reference via u
to v and drops its relay to u (which resembles the safe
reserval rule).

Chapter 4 41

u

v

w

u

v

wr r

WS 2016

Proof of Theorem 4.3
Emulation of delegation rule (u delegates w to v):

First, u introduces w to its relay to v and drops its relay to w
(which resembles the safe reversal rule).

WS 2016 Chapter 4 42

u

v

w

u

v

w

Proof of Theorem 4.3
Emulation of delegation rule (u delegates w to v):

Then w establishes a new relay r, sends its reference to u
(which will be forwared to v) and drops its relay to u (which
resembles the safe reserval rule).

Chapter 4 43

u

v

w

u

v

wr r

WS 2016

Proof of Theorem 4.3
Remark: Since now w is always directly involved whenever
it is introduced or delegated to a node v, w can also ensure
that no corrupted information about it is sent to v. This is
not guaranteed by the old way introduction and delegation
is handled:

u sends a message to v containing w´s reference.

WS 2016 Chapter 4 44

u
v

w
u

v

w

Proof of Theorem 4.3
Transforming G into G1:
First, transform any relay tree in the following way starting
with the most distant relays r from s

using safe reserval for any pair (r,s):

WS 2016 Chapter 4 45

r s v

r´ s´

r s r s

r´

r s

r´ s´
… …

Proof of Theorem 4.3
Transforming G into G1:
Then, transform the star back into the original tree, but with
reversed, isolated edges

using the safe rules emulating the standard delegation rule.
Since at the end just isolated edges are left, we can
simplify that to our standard graph on processes, G1.

WS 2016 Chapter 4 46

vv

Proof of Theorem 4.3

Transforming G1 into G2:
This follows from Theorem 4.2 since
introduction, delegation, fusion, and reversal
can be emulated by our safe primitives.

WS 2016 Chapter 4 47

Proof of Theorem 4.3
Transforming G2 into G´:
For any relay tree T in G´, transform the individual edges
belonging to it in G2 into that tree starting with the closest
relays to v

by using safe reserval for any pair (r,s):

WS 2016 Chapter 4 48

s

r s

v

t∈T

r

t´∈T t∈T

T

Safe Primitives
Embedding into Trusted Communication Model (TCM):

• AL manages references to relays that may be passed on
to establish a connection to that relay

• TCL manages relays (on top of TCP/IP)

WS 2016 Chapter 4 49

TCL Internet
AL

Questions?

WS 2016 50Chapter 4

	Advanced Distributed Algorithms and Data Structures� �Chapter 4: Link Primitives
	Overview
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Model and Basic Primitives
	Universality
	Universality
	Universality
	Universality
	Universality
	Universality
	Universality
	Universality
	Universality
	Universality
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Safe Primitives
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Proof of Theorem 4.3
	Safe Primitives
	Foliennummer 50

