
Advanced Distributed
Algorithms and Data Structures

Chapter 5: TCM Model and
Programming Environment

Christian Scheideler
Institut für Informatik

Universität Paderborn

Overview

• TCM model
• Pseudo-code and example programs
• Programming environment

WS 2016 2Chapter 5

TCM Model
Trusted Communication Model (TCM):

• AL (Application Layer): large storage capacity and computational
power, but potentially insecure

• TCL (Trusted Communication Layer): low storage capacity and
computational power but can securely manage ports and keys and
can securely execute basic primitives

WS 2016 Chapter 5 3

TCL Internet
AL

TCM Model
Trusted Communication Model (TCM):

• AL: can be invaded
• TCL: cannot be invaded or inspected
Goal of TCL: support AL in ensuring availability, integrity, and
confidentiality

WS 2016 Chapter 5 4

TCL Internet
AL

TCM Model

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references () to local relays
WS 2016 5Chapter 5

TCL Internet
AL

TCM Model
Processes can interconnect (via relays) and execute actions.

General form of action: („→“ means „implies“)
〈name〉: 〈event〉 → 〈commands〉

In words, if 〈event〉 is true, then execute 〈commands〉.

Two types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
(Short form of 〈name〉: 〈name〉(〈parameters〉) called → …
If 〈name〉(〈parameters〉)–call received, then execute 〈commands〉.)

• Triggered by a local state:
〈name〉: 〈predicate〉 → 〈commands〉
(If 〈predicate〉 is true, then execute 〈commands〉 .)

All messages are remote action calls.

WS 2016 Chapter 5 6

TCM Model
Processes can interconnect (via relays) and execute actions.

Types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
• Triggered by a local state:

〈name〉: 〈predicate〉 → 〈commands〉
All messages are remote action calls.

Example:
minimum(x,y) →

if x<y then m:=x else m:=y
print(m)

Action „minimum“ is executed upon receipt of a request to call
minimum(x,y). No return of values possible when called remotely!

WS 2016 Chapter 5 7

TCM Model
Processes can interconnect (via relays) and execute actions.

Types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
• Triggered by a local state:

〈name〉: 〈predicate〉 → 〈commands〉
All messages are remote action calls.

Example:
timeout: true →

print(„I am still alive!“)

„true“ ensures that the action is periodically executed by the given
peer.

WS 2016 Chapter 5 8

TCM Model
Execution of actions: Processes can act concurrently but within
a process the actions must be executed in a strictly sequential,
and therefore atomic way.

→ every action must eventually terminate!

This simplifies correctness proofs.

Timing of actions: In order to avoid that actions are called too
frequently, a lower bound for the repeated execution of an action
can be set by calling enable(〈name〉,〈min-time〉), ensuring that
only after min-time steps it is enabled again (i.e., ready to be
executed). This is, for example, useful to control the executions
of timeout actions (see prev. slide).

WS 2016 Chapter 5 9

TCM Model

Next we discuss how to handle relays.

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references () to local relays
WS 2016 10Chapter 5

TCL Internet
AL

TCM Model

Abstraction:

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references () to local relays
WS 2016 11Chapter 5

TCM Model

Abstraction:

• Only primitives allowed for a relay:

new, delete, safe introduction

As we know, this is sufficient for universality.

WS 2016 12Chapter 5

TCM Model
• new Relay: creates new sink relay (i.e., a relay whose

outgoing link points to the process that created it) and
returns a reference to it (which is only locally valid)

having a relay in a relay tree with sink r allows one to
send a message to p

WS 2016 Chapter 5 13

r msg
p if p created r, then message

sent to r is processed by p

TCM Model
• delete r: kills relay r, which has cascading effect

on incoming links, enforced by the TCL (how to
realize that is shown in the next chapter)

Examples:

WS 2016 Chapter 5 14

pp p´ p´

p p´p p´

TCM Model
• dead(r): returns true if r does not exist (because

it has been deleted) or represents a dead end
(i.e., it has no outgoing link any more, which can
be due to a deleted relay or process)

Example:

WS 2016 Chapter 5 15

pp p´ p´
rr

r is a dead end

TCM Model

Recall the safe introduction rule:

Instead of introducing w to v, u can only
introduce its relay to w to v.

WS 2016 Chapter 5 16

u

v

w

u

v

w

TCM Model

Recall the safe introduction rule:

To safely introduce w, u calls r←act(s) for
some action „act“.

WS 2016 Chapter 5 17

u

v

w

u

v

w

r

s s

s´
r

TCM Model
• Local call of an action:

〈name〉(〈parameters〉)
Relays in 〈parameters〉 stay as they are.

• Remote call of an action:
〈relay〉←〈name〉(〈parameters〉)
Transforms any relay r in 〈parameters〉 into local r´ with
connection to r when executing 〈name〉 in destination.

WS 2016 Chapter 5 18

r s´sr←act(s):

handled by TCL

TCM Model
• r: (locally valid) ID or relay r
• r.sink: (locally valid) sink ID of relay r

• Test of equal sinks: r.sink=r´.sink
• Relays can be ordered by a process according to their IDs or their

sink IDs so that a quick searching for equal sinks is possible.
• r.incoming: Boolean variable that is true if r has incoming

connections
• r.direct: Boolean variable that is true if r has a direct connection (i.e.,

without intermediate relays) to a sink

WS 2016 Chapter 5 19

r

v

u
r´

s

TCM Model
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

M3 M2 M1
t0:

M2
t1:

M1
t2:

M3
t3:

WS 2016 20Chapter 5

TCM Model
Asynchronous message passing

• Eventual delivery: guaranteed by TCP/IP
• But links might fail due to process or TCL failures!

M3 M2 M1
t0:

M2
t1:

M1
t2:

M3
t3:

WS 2016 21Chapter 5

X
X

X
X

TCM Model
Asynchronous, faulty message passing:
• Messages are eventually delivered or fail
• If an acknowledgement is received for a

message m, then m was correctly delivered.
(However, due to our model it may take
arbitrarily long for an acknowledgement of a
successful transmission to be received.)

Are the primitives new, delete, and safe intro
sufficient to support this model?

WS 2016 Chapter 5 22

TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning
the sink relay of r and deletes r.
Does not preserve weak connectivity if message
with reference to s is lost!

WS 2016 Chapter 5 23

u v

…

…

u v

…

…

r
s s

TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning the
sink relay of r and deletes r.
However, if message with s gets lost, then one of the
processes from r to its sink must be broken (or must
have a broken TCL).

WS 2016 Chapter 5 24

u v

…

…

u v

…

…

r
s s

TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning the
sink relay of r and deletes r.
If we only need to deal with permanent failures, then r
would not be of any use anymore, so its immediate
deletion would be fine.

WS 2016 Chapter 5 25

u v

…

…

u v

…

…

r
s s

TCM Model
Recall the safe reversal rule:

But what if failures are temporary?
1. TCL can recover: message can go on
2. TCL needs to be reset: connection lost
In both cases, the deletion of r is still fine.

WS 2016 Chapter 5 26

u v

…

…

u v

…

…

r
s s

TCM Model
Handling message failures for other kinds of info:

Use standard redundancy methods (in processes)
and acknowledgements so that lost messages do
not cause lost information.
WS 2016 Chapter 5 27

TCL Internet
AL r

Overview

• TCM model
• Pseudo-code and example programs
• Programming environment

WS 2016 28Chapter 5

TCM Model
Pseudo code like in object-oriented programming:

Subject 〈Name〉: // declares process type
local variables
actions

Types of actions:
〈ActionName〉(〈Parameters〉) →

commands in pseudo code

〈ActionName〉: 〈Predicate〉 →
commands in pseudo code

Special action:
init(〈Parameters〉) → // constructor

commands in pseudo code

WS 2016 29Chapter 5

Pseudocode
• Assignment via :=

• Loops (for, while, repeat)

• Conditional branching (if – then – else)

• Comment via { }

• Block structure via indentation

• Call of action via relay: r←act(…)

• Relay: stores reference to a relay (empty reference: ⊥)

• Creation of new processes or relays: new
(new calls init in process)

WS 2016 30Chapter 5

Pseudocode

Examples:
• introduction
• delegation
• broadcast service
• self-stabilizing sorted list

WS 2016 Chapter 5 31

Introduction

Step 1:

In node u:
rw←ask-for-intro(rv)

WS 2016 Chapter 5 32

u

v

w

u

v

w

rv

rw
irv

Introduction
Step 2:

In node w:
ask-for-intro(irv) →

rv := new Relay
irv←introduce(rv)
delete irv

WS 2016 Chapter 5 33

u

v

w

u

v

wrv rv
irv

rw

Delegation
Step 1:

In node u:
rw←ask-for-intro(rv)
delete rw

WS 2016 Chapter 5 34

u

v

w

u

v

w
rw

rv

irv

Broadcast Service

Simple broadcast service via server

Clients

WS 2016 35Chapter 5

Broadcast Service
Subject Server:

n: Integer { stores number of clients }
toServer: Relay { relay for clients to connect to }
toClient: Array[1..MAX] of Relay { stores refs to clients }
init() → { constructor }

n:=0
toServer:=new Relay { sets up relay for clients }

register(C) → { register new client with reference C }
n:=n+1
toClient[n]:=C

broadcast(M) → { send M to all clients }
for i:=1 to n do

M´:=new Object(M) { new object containing M }
toClient[i]←output(M´)

WS 2016 36Chapter 5

Broadcast Service
Subject Client:

toServer, toClient: Relay
init(S) → { constructor }

toServer:=S { S: reference to server }
toClient:=new Relay
toServer←register(toClient)

{ send ref. to client to server }
broadcast(M) → { broadcast M via server }

toServer←broadcast(M)
output(M) → { output M }

print M

WS 2016 37Chapter 5

Self-stabilizing Sorted List

Goal:

2

4

5

1

3

1 2 3 4 5

WS 2016 Chapter 5 38

Self-stabilizing Sorted List
Variables in a node v:
• v.id: ID of v
• v.in: incoming relay of v
• v.left ∈ V∪{⊥}: relay to closest left neighbor of v

(l.sink: sink of left, left.id: ID of left, left.id<v.id)
• v.right ∈ V∪{⊥}: relay to closest right neighbor of v
• v.D: set of relays to to-be-delegated neighbors of v

linearizeleft
right

WS 2016 Chapter 5

timeout

v

39

in Did

Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(1): 4 delegates 1 to 2

4321 5 6

4321 5 6

WS 2016 Chapter 5 40

Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(3): 4 sets 4.left:=3 and delegates 2 to 3

WS 2016 Chapter 5

4321 5 6

4321 5 6

41

Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(2) oder linearize(5): drop reference.

WS 2016 Chapter 5

4321 5 6

4321 5 6

42

Self-stabilizing Sorted List
Periodically, every node also executes a timeout action.

Upon timeout, 4 introduces itself to 2 and 5.

Theorem 5.1: Linearize and timeout guarantee that we
have a self-stabilizing sorted list.

Proof: see BA lecture.
WS 2016 Chapter 5

4321 5 6

43

Self-stabilizing Sorted List
Simplifying assumptions:
• If left=⊥, then we assume for comparisons that left.id=-∞.
• If right=⊥, then we assume for comparisons that right.id=+∞.
• A call r←act(s) is only executed if r and s are not equal to ⊥.

Remark: We need D because in certain cases a node v is not
interested any more in some relay r, either because it is not a
direct connection to some sink relay, or it leads to a node that is
further away than its current left or right neighbor. We cannot
directly delete these relays because they may still have incoming
connections due to some previous safe introduction or
delegation, so we have to wait until all of ist incoming
connections are closed before deleting it.

WS 2016 Chapter 5 44

Self-stabilizing Sorted List
Subject Sorted_List:

id: Integer
left, right, in: Relay
D: Set of Relay

timeout: true →
{ executed by node u }
if left.id≥id or left.sink=in or not left.direct then

D:=D∪{left}; left:= ⊥
else

left←linearize(in)
if right.id≤id or right.sink=in or not right.direct then

D:=D∪{right}; right:= ⊥
else

right←linearize(in)
for all v∈D with v.incoming=false do

if v.sink≠in then linearize(v)
else delete v

WS 2016 45Chapter 5

uu.l u.r

uu.l u.r

Correctly set left and right
(u.left.id<u.id and u.right.id>u.id):

u.l: short form of u.left
u.r: short form of u.right

Self-stabilizing Sorted List
linearize(v) →

{ executed by node u }
if v.sink∈{in, left.sink, right.sink} then delete v
else

if v.id<left.id then
v←ask-for-lin(left) { safe reversal }
delete v

if left.id<v.id<id then
left←ask-for-lin(v) { safe reversal }
D:=D∪{left} { might have inc. conn.! }
left:=v

if id<v.id<right.id then
right←ask-for-lin(v)
D:=D∪{right} { might have inc. conn.! }
right:=v

if right.id<v.id then
v←ask-for-lin(right)
delete v

WS 2016 Chapter 5 46

uu.lv

uu.l v

u.ru v

vu.ru

Self-stabilizing Sorted List
ask-for-lin(v) →

{ executed by node u }
v←linearize(in) { safe reversal }
delete v

Problem: A sorted list is not a very robust structure.

Solutions:
• keep old connections (→ multilist, see BA lecture)

• construct a clique (Ch. 9)

WS 2016 Chapter 5 47

Overview

• TCM model
• Pseudo-code and example programs
• Programming environment

WS 2016 48Chapter 5

Programming Environment

• Origin: Hewitt’s Actor Model (1973)
for neural networks

• Since then, a lot of work in the area of
programming languages
(E, Scala,…)

• We will use an extension based on C++
and 0MQ to implement the pseudo code.

WS 2016 49Chapter 5

Programming Environment

WS 2016 Chapter 5 50

AL:

Relay Manager

Process Manager

Apps (Ch. 12)

Our Library

0MQ

TCL:

Clock Sync (Ch. 7)Contention (Ch. 6)

Logical Clock (Ch. 8)Overlay (Ch. 9,10)

Transactions (Ch. 8)
not yet
realized

(PG)

Control (not realized)

Commit, … (Ch. 11)

Programming Environment

Next, we present an example program
realizing ping-pong communication between
two processes. More information on the
environment will be given in the tutorial next
week.

WS 2016 Chapter 5 51

Programming Environment
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE ApplicationTests
#include <boost/test/unit_test.hpp>
#include <relaymq.h>

#include "../tests/messages/addressbook.pb.h"

#include "../include/Relay.h"
#include "../include/Socket.h"
#include "../include/ApplicationContext.h"
#include "../include/Subject.h"

class PingPongSubject: public Subject{

public:
PingPongSubject(int limit):

limit(limit),
curr(0){

}

private:

int limit;
int curr;
RelayRef theOtherGuy;

WS 2016 Chapter 5 52

Programming Environment
bool onTimeout(){

return (curr < limit);
}

virtual bool onMessage(RelayRef receiver, std::string msg, std::vector<RelayRef> refs){
if(msg == "INIT"){//Aus der MAIN

theOtherGuy = refs[0];
bool ok = theOtherGuy->Send("INTRODUCE", {receiver});
assert(ok);

}else
if(msg == "INTRODUCE"){//Vom anderen Subject

theOtherGuy = refs[0];
theOtherGuy->Send("PING",{});

} else
if(msg == "PING"){

puts(msg.c_str());
theOtherGuy->Send("PONG", {});
curr++;

}
else
if(msg == "PONG"){

puts(msg.c_str());
theOtherGuy->Send("PING", {});
curr++;

}
return true;

}

};

WS 2016 Chapter 5 53

Programming Environment
BOOST_AUTO_TEST_CASE(ping_pong_test){

puts("=============== ping_pong_test() ==================");

/*Boilerplate-Code that sets up everything in the background */
ApplicationContext::Init();

/* Every subject is supposed to send 1000 messages */
int limit = 1000;

/* creates a subject and sets limit */
auto ping = ApplicationContext::Create<PingPongSubject>(limit);
auto pong = ApplicationContext::Create<PingPongSubject>(limit);

/*
* sends message and reference to the subject
*/
pong->Send("INIT", {ping});

/*
* Starts application:
* 1) The main method blocks till all subjects are deleted
* 2) The delivery of messages starts
*/
ApplicationContext::Start();

}

WS 2016 Chapter 5 54

Questions?

WS 2016 55Chapter 5

	Advanced Distributed Algorithms and Data Structures� �Chapter 5: TCM Model and Programming Environment
	Overview
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	TCM Model
	Overview
	TCM Model
	Pseudocode
	Pseudocode
	Introduction
	Introduction
	Delegation
	Broadcast Service
	Broadcast Service
	Broadcast Service
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Self-stabilizing Sorted List
	Overview
	Programming Environment
	Programming Environment
	Programming Environment
	Programming Environment
	Programming Environment
	Programming Environment
	Foliennummer 55

