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Overview

• TCM model
• Pseudo-code and example programs
• Programming environment
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TCM Model
Trusted Communication Model (TCM):

• AL (Application Layer): large storage capacity and computational
power, but potentially insecure

• TCL (Trusted Communication Layer): low storage capacity and
computational power but can securely manage ports and keys and
can securely execute basic primitives
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TCM Model
Trusted Communication Model (TCM):

• AL: can be invaded
• TCL: cannot be invaded or inspected
Goal of TCL: support AL in ensuring availability, integrity, and
confidentiality
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TCM Model

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references (       ) to local relays
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TCM Model
Processes can interconnect (via relays) and execute actions.

General form of action: („→“ means „implies“)
〈name〉: 〈event〉 → 〈commands〉

In words, if 〈event〉 is true, then execute 〈commands〉.

Two types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
(Short form of 〈name〉: 〈name〉(〈parameters〉) called → …
If 〈name〉(〈parameters〉)–call received, then execute 〈commands〉.)

• Triggered by a local state:
〈name〉: 〈predicate〉 → 〈commands〉
(If 〈predicate〉 is true, then execute 〈commands〉 .)

All messages are remote action calls.
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TCM Model
Processes can interconnect (via relays) and execute actions.

Types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
• Triggered by a local state:

〈name〉: 〈predicate〉 → 〈commands〉
All messages are remote action calls.

Example:
minimum(x,y) →

if x<y then m:=x else m:=y
print(m)

Action „minimum“ is executed upon receipt of a request to call
minimum(x,y). No return of values possible when called remotely!
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TCM Model
Processes can interconnect (via relays) and execute actions.

Types of actions:
• Triggered by a local/remote call:

〈name〉(〈parameters〉) → 〈commands〉
• Triggered by a local state:

〈name〉: 〈predicate〉 → 〈commands〉
All messages are remote action calls.

Example:
timeout: true →

print(„I am still alive!“)

„true“ ensures that the action is periodically executed by the given
peer. 
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TCM Model
Execution of actions: Processes can act concurrently but within
a process the actions must be executed in a strictly sequential, 
and therefore atomic way.

→ every action must eventually terminate!

This simplifies correctness proofs.

Timing of actions: In order to avoid that actions are called too
frequently, a lower bound for the repeated execution of an action
can be set by calling enable(〈name〉,〈min-time〉), ensuring that
only after min-time steps it is enabled again (i.e., ready to be
executed). This is, for example, useful to control the executions
of timeout actions (see prev. slide).
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TCM Model

Next we discuss how to handle relays.

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references (       ) to local relays
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TCM Model

Abstraction:

• Processes (at AL and TCL)
• Relays (managed by the TCL)
• Processes have references (       ) to local relays
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TCM Model

Abstraction:

• Only primitives allowed for a relay:

new, delete, safe introduction

As we know, this is sufficient for universality.
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TCM Model
• new Relay: creates new sink relay (i.e., a relay whose

outgoing link points to the process that created it) and
returns a reference to it (which is only locally valid)

having a relay in a relay tree with sink r allows one to
send a message to p
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TCM Model
• delete r: kills relay r, which has cascading effect

on incoming links, enforced by the TCL (how to
realize that is shown in the next chapter)

Examples:
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TCM Model
• dead(r): returns true if r does not exist (because

it has been deleted) or represents a dead end 
(i.e., it has no outgoing link any more, which can
be due to a deleted relay or process) 

Example:
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TCM Model

Recall the safe introduction rule:

Instead of introducing w to v, u can only
introduce its relay to w to v.
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TCM Model

Recall the safe introduction rule:

To safely introduce w, u calls r←act(s) for
some action „act“.
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TCM Model
• Local call of an action:

〈name〉(〈parameters〉) 
Relays in 〈parameters〉 stay as they are.

• Remote call of an action:
〈relay〉←〈name〉(〈parameters〉)
Transforms any relay r in 〈parameters〉 into local r´ with
connection to r when executing 〈name〉 in destination.
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TCM Model
• r: (locally valid) ID or relay r
• r.sink: (locally valid) sink ID of relay r

• Test of equal sinks: r.sink=r´.sink
• Relays can be ordered by a process according to their IDs or their

sink IDs so that a quick searching for equal sinks is possible. 
• r.incoming: Boolean variable that is true if r has incoming

connections
• r.direct: Boolean variable that is true if r has a direct connection (i.e., 

without intermediate relays) to a sink
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TCM Model
Asynchronous message passing

• all messages are eventually delivered
• but no FIFO delivery guaranteed

M3 M2 M1
t0:

M2
t1:

M1
t2:

M3
t3:
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TCM Model
Asynchronous message passing

• Eventual delivery: guaranteed by TCP/IP
• But links might fail due to process or TCL failures!

M3 M2 M1
t0:

M2
t1:

M1
t2:

M3
t3:
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TCM Model
Asynchronous, faulty message passing:
• Messages are eventually delivered or fail
• If an acknowledgement is received for a 

message m, then m was correctly delivered. 
(However, due to our model it may take
arbitrarily long for an acknowledgement of a 
successful transmission to be received.)

Are the primitives new, delete, and safe intro
sufficient to support this model?
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TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning
the sink relay of r and deletes r.
Does not preserve weak connectivity if message
with reference to s is lost!

WS 2016 Chapter 5 23

u v

…

…

u v

…

…

r
s s



TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning the
sink relay of r and deletes r.
However, if message with s gets lost, then one of the
processes from r to its sink must be broken (or must 
have a broken TCL).
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TCM Model
Recall the safe reversal rule:

u safely introduces relay s to the process owning the
sink relay of r and deletes r.
If we only need to deal with permanent failures, then r 
would not be of any use anymore, so its immediate 
deletion would be fine. 
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TCM Model
Recall the safe reversal rule:

But what if failures are temporary?
1. TCL can recover: message can go on
2. TCL needs to be reset: connection lost
In both cases, the deletion of r is still fine.
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TCM Model
Handling message failures for other kinds of info:

Use standard redundancy methods (in processes) 
and acknowledgements so that lost messages do 
not cause lost information.
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Overview

• TCM model
• Pseudo-code and example programs
• Programming environment
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TCM Model
Pseudo code like in object-oriented programming:

Subject 〈Name〉:     // declares process type
local variables
actions

Types of actions:
〈ActionName〉(〈Parameters〉) →

commands in pseudo code

〈ActionName〉: 〈Predicate〉 →
commands in pseudo code

Special action:
init(〈Parameters〉)  → // constructor

commands in pseudo code
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Pseudocode
• Assignment via :=

• Loops (for, while, repeat)

• Conditional branching (if – then – else)

• Comment via  { } 

• Block structure via indentation

• Call of action via relay: r←act(…)

• Relay: stores reference to a relay (empty reference: ⊥)

• Creation of new processes or relays: new
(new calls init in process)
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Pseudocode

Examples:
• introduction
• delegation
• broadcast service
• self-stabilizing sorted list
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Introduction

Step 1:

In node u:
rw←ask-for-intro(rv)
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Introduction
Step 2:

In node w:
ask-for-intro(irv) →

rv := new Relay
irv←introduce(rv)
delete irv
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Delegation
Step 1:

In node u:
rw←ask-for-intro(rv)
delete rw
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Broadcast Service

Simple broadcast service via server

Clients
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Broadcast Service
Subject Server:

n: Integer           { stores number of clients }
toServer: Relay  { relay for clients to connect to }
toClient: Array[1..MAX] of Relay   { stores refs to clients }
init() → { constructor } 

n:=0
toServer:=new Relay    { sets up relay for clients }

register(C) → { register new client with reference C }
n:=n+1
toClient[n]:=C

broadcast(M) → { send M to all clients }
for i:=1 to n do

M´:=new Object(M)    { new object containing M }
toClient[i]←output(M´)
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Broadcast Service
Subject Client:

toServer, toClient: Relay 
init(S) → { constructor }           

toServer:=S         { S: reference to server }
toClient:=new Relay
toServer←register(toClient)  

{ send ref. to client to server }
broadcast(M) → { broadcast M via server }

toServer←broadcast(M)
output(M) → { output M }

print M
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Self-stabilizing Sorted List

Goal:

2

4

5

1

3

1 2 3 4 5
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Self-stabilizing Sorted List
Variables in a node v:
• v.id:  ID of v
• v.in: incoming relay of v 
• v.left ∈ V∪{⊥}: relay to closest left neighbor of v

(l.sink: sink of left, left.id: ID of left, left.id<v.id)
• v.right ∈ V∪{⊥}: relay to closest right neighbor of v
• v.D: set of relays to to-be-delegated neighbors of v

linearizeleft
right
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Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(1): 4 delegates 1 to 2

4321 5 6

4321 5 6
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Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(3): 4 sets 4.left:=3 and delegates 2 to 3
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Self-stabilizing Sorted List
Linearize action:
Idea: keep edges to closest neighbors and delegate rest.

Upon linearize(2) oder linearize(5): drop reference.
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Self-stabilizing Sorted List
Periodically, every node also executes a timeout action.

Upon timeout, 4 introduces itself to 2 and 5.

Theorem 5.1: Linearize and timeout guarantee that we 
have a self-stabilizing sorted list.

Proof: see BA lecture.
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Self-stabilizing Sorted List
Simplifying assumptions:
• If left=⊥, then we assume for comparisons that left.id=-∞.
• If right=⊥, then we assume for comparisons that right.id=+∞.
• A call r←act(s) is only executed if r and s are not equal to ⊥.

Remark: We need D because in certain cases a node v is not 
interested any more in some relay r, either because it is not a 
direct connection to some sink relay, or it leads to a node that is
further away than its current left or right neighbor. We cannot
directly delete these relays because they may still have incoming
connections due to some previous safe introduction or
delegation, so we have to wait until all of ist incoming
connections are closed before deleting it. 
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Self-stabilizing Sorted List
Subject Sorted_List:

id: Integer
left, right, in: Relay
D: Set of Relay

timeout: true →
{ executed by node u }
if left.id≥id or left.sink=in or not left.direct then

D:=D∪{left}; left:= ⊥
else

left←linearize(in)
if right.id≤id or right.sink=in or not right.direct then

D:=D∪{right}; right:= ⊥
else

right←linearize(in)
for all v∈D with v.incoming=false do

if v.sink≠in then linearize(v)
else delete v
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Self-stabilizing Sorted List
linearize(v) →

{ executed by node u }
if v.sink∈{in, left.sink, right.sink} then delete v
else

if v.id<left.id then
v←ask-for-lin(left) { safe reversal }
delete v

if left.id<v.id<id then
left←ask-for-lin(v) { safe reversal }
D:=D∪{left}    { might have inc. conn.! }
left:=v

if id<v.id<right.id then
right←ask-for-lin(v)
D:=D∪{right}  { might have inc. conn.! }
right:=v

if right.id<v.id then
v←ask-for-lin(right)
delete v
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Self-stabilizing Sorted List
ask-for-lin(v) →

{ executed by node u }
v←linearize(in)  { safe reversal }
delete v

Problem: A sorted list is not a very robust structure.

Solutions: 
• keep old connections (→ multilist, see BA lecture)

• construct a clique (Ch. 9)
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Overview

• TCM model
• Pseudo-code and example programs
• Programming environment
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Programming Environment

• Origin: Hewitt’s Actor Model (1973)
for neural networks

• Since then, a lot of work in the area of 
programming languages
(E, Scala,…)

• We will use an extension based on C++ 
and 0MQ to implement the pseudo code.
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Programming Environment
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AL:

Relay Manager

Process Manager

Apps (Ch. 12)

Our Library

0MQ

TCL:

Clock Sync (Ch. 7)Contention (Ch. 6)

Logical Clock (Ch. 8)Overlay (Ch. 9,10)

Transactions (Ch. 8)
not yet
realized

(PG)

Control (not realized)

Commit, … (Ch. 11)



Programming Environment

Next, we present an example program
realizing ping-pong communication between
two processes. More information on the
environment will be given in the tutorial next
week.
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Programming Environment
#define BOOST_TEST_DYN_LINK
#define BOOST_TEST_MODULE ApplicationTests
#include <boost/test/unit_test.hpp>
#include <relaymq.h>

#include "../tests/messages/addressbook.pb.h"

#include "../include/Relay.h"
#include "../include/Socket.h"
#include "../include/ApplicationContext.h"
#include "../include/Subject.h"

class PingPongSubject: public Subject{

public:
PingPongSubject(int limit):

limit(limit),
curr(0){

}

private:

int limit;
int curr;
RelayRef theOtherGuy;
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Programming Environment
bool onTimeout(){

return (curr < limit);
}

virtual bool onMessage(RelayRef receiver, std::string msg, std::vector<RelayRef> refs){
if(msg == "INIT"){//Aus der MAIN

theOtherGuy =  refs[0];
bool ok = theOtherGuy->Send("INTRODUCE", {receiver});
assert(ok);

}else
if(msg == "INTRODUCE"){//Vom anderen Subject

theOtherGuy =  refs[0];
theOtherGuy->Send("PING",{});

} else
if(msg == "PING"){

puts(msg.c_str());
theOtherGuy->Send("PONG", {});
curr++;

}
else
if(msg == "PONG"){

puts(msg.c_str());
theOtherGuy->Send("PING", {});
curr++;

}
return true;

}

};
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Programming Environment
BOOST_AUTO_TEST_CASE(ping_pong_test ){

puts("=============== ping_pong_test() ==================");

/*Boilerplate-Code that sets up everything in the background */
ApplicationContext::Init();

/* Every subject is supposed to send 1000 messages */
int limit = 1000;

/* creates a subject and sets limit */
auto ping = ApplicationContext::Create<PingPongSubject>(limit);
auto pong = ApplicationContext::Create<PingPongSubject>(limit);

/*
*  sends message and reference to the subject
*/
pong->Send("INIT", {ping});

/*
* Starts application:
* 1) The main method blocks till all subjects are deleted
* 2) The delivery of messages starts
*/
ApplicationContext::Start();

}
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Questions?
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