
Advanced Distributed
Algorithms and Data Structures

Chapter 6: Contention Resolution

Christian Scheideler
Institut für Informatik

Universität Paderborn

Overview

• Motivation and problem
• Contention resolution in the Internet
• Contention resolution in wireless networks

WS 2016 2Chapter 6

Motivation
• In large distributed systems, failures are not an

exception but the norm.
• To find out about failed/killed processes, each

process should periodically check its neighbors.
• How often should a process check its neighbors

to avoid contention problems?

WS 2016 Chapter 6 3

Contention Resolution Problem
Concrete scenario: n clients want to periodically
ping some server

WS 2016 Chapter 6 4

Clients

Contention Resolution Problem
Abstract setting: n nodes want to periodically ping
some node u

WS 2016 Chapter 6 5

u

Contention Resolution Problem
Problem: If all of the nodes sind a ping message to
u in each time step, u gets overwhelmed with
messages.

WS 2016 Chapter 6 6

u

Contention Resolution Problem
Ideal: on average, u only gets a constant number
of ping messages in each round.
 each node should ping u with probability 1/n

WS 2016 Chapter 6 7

u

Contention Resolution Problem
To converge to a ping probability of 1/n, we need a
contention resolution protocol.

WS 2016 Chapter 6 8

u

Overview

• Motivation and problem
• Contention resolution in the Internet
• Contention resolution in wireless networks

WS 2016 9Chapter 6

Contention Resolution
Popular approach in the Ethernet: exponential
backoff (Metcalfe and Boggs)

Instead of a node u, we have a shared medium,
and only one computer can use the medium at a
time.

WS 2016 Chapter 6 10

Contention Resolution
Assumptions:
• A node can only successfully tansmit a message on the shared

medium if it is the only one currently transmitting a message.
• If more than one node attempts to transmit a message at the same

time, a collision occurs.
• A node attempting to transmit a message can detect whether a

collision occurs or not. (This allows so-called carrier sense multiple
access with collision detection (short CSMA/CD) protocols to be
used.)

• Time is divided into synchronized time slots, and it takes just one
time slot to transmit a message.

Exponential backoff protocol:
• after c collisions, a random time slot between 0 and 2c-1 is chosen

for the next transmission attempt

WS 2016 Chapter 6 11

Contention Resolution
Exponential backoff protocol:
• after c collisions, a random time slot between 0 and 2c-1 is chosen for the

next transmission attempt

Theorem 6.1: Given n nodes where node v had c(v) collisions in the past, and
every node only wants to transmit one message, the expected time of node v to
succeed in transmitting its message is O(max{n,2c(v)}).
Proof:
• Let pv denote the transmission probability of node v. Node v needs at most

i=1
log n 2i  2n many time steps till pv  1/n.

• In general, after at most i=1
(log n)+j 2i  2n2j many time steps, pv  1/(n2j).

• Hence, after 2n steps, the probability of the j-th transmission attempt of
node v to fail is at most (n-1)1/(n2j-1)  1/2j-1.

• Thus, the probability that, after 2n steps, v needs at least j transmission
attempts, is at most

i=1
j-1 1/2i-1  1/2(j-2)2/2

• Exercise: bound based on that the expected number of transmission
attempts of a node and from that the expected time for a node to succeed.

WS 2016 Chapter 6 12

Contention Resolution
Problem with exponential backoff:
• No convergence to 1/n. Instead, for each new

message a new backoff process is started. This may
create bursts of messages at certain times, which is
problematic for other environments like the Internet.

Alternatives:
• additive increase multiplicative decrease (AIMD)

mechanism to adjust the probabilities, which is similar
to TCP

• Multiplicate increase multiplicative decrease (MIMD)
mechanism to adjust the probabilities

WS 2016 Chapter 6 13

AIMD Protocol 1
AIMD protocol 1:
• Initially, set T to some fixed value Tmin (determined by

the maximum number of new nodes to be expected in
a time slot).

• Decide with probability 1/T to ping node u.
• If so, consider the following two cases:

If u sends an ACK back, then set T:=max{T-1,Tmin}.
Otherwise, set T:=2T.

Simplifying assumption:
For any sent ping message the ACK will be received
instantly whenever at most c nodes ping u at the same
time. (Otherwise, no ACK is sent by u.)

WS 2016 Chapter 6 14

AIMD Protocol 1
• Tv(t): T value of v at time t
• pv(t)=1/Tv(t): ping probability of v at time t
How does pv(t) change over the time?

E[pv(t+1)] = E[1/Tv(t+1)]
= Pr[ping]  (Pr[ACK]1/(Tv(t)-1) + Pr[no ACK](1/(2Tv(t))) +

Pr[no ping]  (1/Tv(t))
= (1/Tv(t))  (Pr[ACK]1/(Tv(t)-1) + Pr[no ACK](1/(2Tv(t))) +

(1-1/Tv(t))  (1/Tv(t))

Hence, E[pv(t+1)]pv(t) if and only if
Pr[ACK]1/(Tv(t)-1) + Pr[no ACK](1/(2Tv(t))  1/Tv(t) (*)

Let q=Pr[no ACK]. Then (*) holds if and only if q  2/(Tv(t)+1). Or in
other words, q  2pv(t)/(1+pv(t)).
This, however, is bad, as we will see.

WS 2016 Chapter 6 15

AIMD Protocol 1

Hence, nodes with larger ping probabilities have a better
chance of growing their probabilities than those with lower
ping probabilities, which destroys fairness.

WS 2016 Chapter 6 16

0 1 pv(t)

2pv(t)/(1+pv(t))

1

Pr[no ACK]

pv(t) shinks

pv(t) grows

AIMD Protocol 2
AIMD protocol 2: (similar to TCP)
• Initially, set k to 1. N is assumed to be a sufficiently

large value known to all nodes so that it upper
bounds n.

• Decide with probability k/N to ping node u.
• If so, consider the following two cases:

If u sends an ACK back, then set k:=min{k+1,N}.
Otherwise, set k:=max{k/2,1}.

Simplifying assumption:
For any sent ping message the ACK will be received
instantly whenever at most c nodes ping u at the same
time. (Otherwise, no ACK is sent by u.)

WS 2016 Chapter 6 17

AIMD Protocol 2
• kv(t): k value of v at time t
• pv(t)=kv(t)/N: ping probability of v at time t
How does pv(t) change over the time?

E[pv(t+1)] = E[kv(t+1)/N]
= Pr[ping]  (Pr[ACK](kv(t)+1)/N + Pr[no ACK]kv(t)/(2N)) +

Pr[no ping]  (kv(t)/N)
= (kv(t)/N)  (Pr[ACK](kv(t)+1)/N + Pr[no ACK]kv(t)/(2N)) +

(1-kv(t)/N)  (kv(t)/N)

Hence, E[pv(t+1)]pv(t) if and only if
Pr[ACK](kv(t)+1)/N + Pr[no ACK]kv(t)/(2N)  kv(t)/N (*)

Let q=Pr[no ACK]. Then (*) holds if and only if q  2/(kv(t)+2). Or in
other words, q  2/(Npv(t)+2).
This is better, as we will see.

WS 2016 Chapter 6 18

AIMD Protocol 2

Now, nodes with smaller ping probabilities have a better chance of growing, so
fairness can be achieved. However, for the probabilities to converge to a sum
of 1 (which would be ideal), Pr[no ACK] would have to be equal to 2n/N. This
would require u to set its threshold c to ~log(N/n). Also, the convergence to 1/n
for each node is slow due to the additive increase. Can we do better?

WS 2016 Chapter 6 19

0 1 pv(t)

2/(Npv(t)+2)

1

Pr[no ACK]

pv(t) shinks

pv(t) grows

MIMD Protocol
MIMD protocol:
• Initially, set p to pmax for some constant pmax<1 (which

depends on the maximum number of new nodes to be
expected in a time step). Let 0<1 be a sufficiently small
constant.

• Decide with probability p to ping node u.
• If so, consider the following two cases:

If u sends an ACK back, then set p:=min{(1+)p,pmax}.
Otherwise, set p:=p/(1+).

Simplifying assumption:
For any sent ping message the ACK will be received instantly
whenever at most c nodes ping u at the same time.

WS 2016 Chapter 6 20

MIMD Protocol
• pv(t): p value of v at time t
How does pv(t) change over the time?

E[pv(t+1)] = Pr[ping]  (Pr[ACK](1+)pv(t) + Pr[no ACK]pv(t)/(1+)) +
Pr[no ping]  pv(t)

= pv(t)  (Pr[ACK](1+)pv(t) + Pr[no ACK]pv(t)/(1+)) +
(1-pv(t))  pv(t)

Hence, E[pv(t+1)]pv(t) if and only if
Pr[ACK](1+)pv(t) + Pr[no ACK]pv(t)/(1+)  pv(t) (*)

Let q=Pr[no ACK]. Then (*) holds if and only if q  (1+)/(2+).

For vV pv to converge to 1, the threshold c in u should be set so that
Pr[no ACK] = (1+)/(2+) whenever vV pv=1. A good approximation for
that is c=1 since then it holds for any vV that

Pr[no ACK] = 1- wv(1-pw)  1-ewv pw  1-1/e [1/2,2/3]

WS 2016 Chapter 6 21

MIMD Protocol
Problem: ACK needs more than one time step to be sent
back

Solution: once the next ping transmission is attempted,
check whether ACK of previous transmission has already
arrived. If not, consider the previous transmission to have
failed (i.e., no ACK was sent). Adapt the access probability
accordingly.

WS 2016 Chapter 6 22

MIMD Protocol
Subject MIMD_Client:

server, in: Relay
p: Real
delay: Integer
ack_received: Boolean

init(s) 
server:=s
in:=new Relay
p:=pmax
ack_received:=false
delay:=random_time(p)
enable(timeout, delay)

random_time(p) outputs tℕ with probability (1-p)t-1p.

WS 2016 Chapter 6 23

timeout: true 
if ack_received then

p:=min{(1+)p,pmax}
else

p:=p/(1+)
serverping(in)
ack_received:=false
delay:=random_time(p)
enable(timeout, delay)

pong()  { processes ACK}
ack_received:=true

MIMD Protocol
Subject MIMD_Server:

in: Relay
counter: Integer
Q: Queue of Relay

init() 
in:=new Relay
counter:=0
Q:=

ping(out) 
counter:=counter+1
enqueue(Q,out)

WS 2016 Chapter 6 24

timeout: true 
if counter=1 then

out:=dequeue(Q)
outpong() {sends ACK}
delete out

else
while not empty(Q) do

out:=dequeue(Q)
delete out

counter:=0

MIMD Protocol
Problem: the MIMD Protocol has no means to converge to
fairness as every node v basically has the same Pr[no ACK] and
therefore all pv´s have the same drift direction. Even worse, if we
start with a v pv<<1, then the ratio E[pt+1(v)]/pt(v) gets larger the
larger the pt(v) values are. Hence, in this case larger probabilities
are growing quicker than smaller ones.

Solution 1:
• Every ping of node v contains pv (resp. the i with

pv=pmax/(1+)i).
• Among the nodes contacting u between two timeouts, an ACK

is sent back only for the node with smallest probability, and
only if at most d nodes contacted u for some constant d>1.

WS 2016 Chapter 6 25

MIMD Protocol
Problem: the MIMD Protocol has no means to converge to
fairness as every node v basically has the same Pr[no ACK] and
therefore all pv´s have the same drift direction. Even worse, if we
start with a v pv<<1, then the ratio E[pt+1(v)]/pt(v) gets larger the
larger the pt(v) values are. Hence, in this case larger probabilities
are growing quicker than smaller ones.

Solution 2 (Fair MIMD Protocol):
• Every ping of node v contains pv (resp. the i with

pv=pmax/(1+)i).
• Node u collects the past d successfully acknowledged ping

messages for a sufficiently large, odd d and sends in its ACK
the median value of the pv´s of these pings back to the
sending node, say v.

• Node v then resets its pv to pv:=(1+)median.

WS 2016 Chapter 6 26

Simulation of Strategy 1
Setup: 100 nodes, =0.01, d=3, just one run

Strategy 1 is indeed
fair, but it may take
a long time to
converge (if  is
small).

WS 2016 Chapter 6 27

Simulation of Strategy 2
Setup: 100 nodes, =0.01, d=3, just one run

Strategy 2 is also
fair and converges
much faster than
Strategy 1.

WS 2016 Chapter 6 28

Fair MIMD Protocol
Subject Fair_MIMD_Client:

server, in: Relay
delay, i, med_i: Integer
ack_received: Boolean

init(s) 
server:=s
in:=new Relay
i:=0 { prob=pmax }
ack_received:=false
delay:=random_time(p(i))
enable(timeout, delay)

We set p(i)=pmax/(1+)i

WS 2016 Chapter 6 29

timeout: true 
if ack_received then

i:=max{med_i-1,0}
else

i:=i+1
serverping(in, i)
ack_received:=false
delay:=random_time(p(i))
enable(timeout, delay)

pong(median) 
ack_received:=true
med_i:=median

Fair MIMD Protocol
Subject Fair_MIMD_Server:

in: Relay
counter, i: Integer
Q: Queue of Relay
M: Queue of Integer

init() 
in:=new Relay
counter:=0
Q:=
M:=

ping(out, ival) 
counter:=counter+1
i:=ival
enqueue(Q,out)

WS 2016 Chapter 6 30

timeout: true 
if counter=1 then

out:=dequeue(Q)
enqueue(M,i)
if size(M)>3 then

dequeue(M)
outpong(median(M))
delete out

else
while not empty(Q) do

out:=dequeue(Q)
delete out

counter:=0

Fair MIMD Protocol
Subject Fair_MIMD_Server:

in: Relay
counter, i: Integer
Q: Queue of Relay
M: Queue of Integer

init() 
in:=new Relay
counter:=0
Q:=
M:=

ping(out, ival) 
counter:=counter+1
i:=ival
enqueue(Q,out)

WS 2016 Chapter 6 31

timeout: true 
if counter=1 then

out:=dequeue(Q)
enqueue(M,i)
if size(M)>3 then

dequeue(M)
outpong(median(M))
delete out

else
while not empty(Q) do

out:=dequeue(Q)
delete out

counter:=0

Median of last
3 i-values

Fair MIMD Protocol
Why median and not the average value?
The median is more robust to manipulations and extreme values
(due to, for example, newly connected nodes).

No formal analysis of the Fair MIMD protocol is known yet.

Conjecture:
• Suppose that p1…pn are the ping probabilities used by the

nodes, sorted in increasing order, and let the median
probability, pmed, be defined as the pj where i<j pi½ i pi and
i>j pi ½ i pi. Then the other probabilities converge towards
pmed, ultimately resulting in fairness.

We will come back to the median rule later in a different context.

WS 2016 Chapter 6 32

Fair MIMD Protocol
Application: mutual exclusion

The mutual exclusion problem is a resource allocation problem in which
n processes contend for exclusive access to a given resource. Any
solution to this problem must satisfy the following two properties:
• Mutual Exclusion (safety):

No two processes access the resource simultaneously.
• No Starvation (liveness):

Provided that any process holding the resource will eventually
release it, a process that requests the resource will eventually get it.

• The safety property can be handled by our contention resolution
protocols: once exactly one process sends a ping to the resource, it
will have the right to access it.

• The liveness property is satisfied if we have fairness, since in this
case every process eventually has a probability of around 1/n to
succeed.

WS 2016 Chapter 6 33

General MIMD Protocol
Contention resolution problem for arbitrary relay graphs:

• Execute Fair_MIMD_Client Protocol in parallel for each
outgoing relay (i.e., each such relay maintains prob p(i))

• Execute Fair_MIMD_Server Protocol in parallel for each
process or sink relay

WS 2016 Chapter 6 34

General MIMD Protocol
Application: monitoring of relays at the TCL layer
• If a relay r is deleted by a process, it is just marked for deletion in the TCL

as long as it has incoming links (or outgoing messages). Once all incoming
links are gone (and all outgoing messages are gone or cannot be sent
further due to a missing outgoing link), the relay is deleted.

• A relay r is a dead end if it was deleted by a process or it has no incoming
link any more (i.e., dead(r)=true).

• Whenever a ping is sent to a dead end r, a NACK message is sent back to
indicate that r is a dead end.

• Whenever a TCL receives a NACK for some relay r, it marks it as a dead
end.

• In this way, cascading deletions of incoming links can be realized.

WS 2016 Chapter 6 35

pp p´ p´

Overview

• Motivation and problem
• Contention resolution in the Internet
• Contention resolution in wireless networks

WS 2016 36Chapter 6

Chapter 6 37

Wireless Contention Resolution
We assume that only one node can use the
wireless medium at a time.

u

WS 2016

Chapter 6 38

Wireless Contention Resolution
Many problems: wireless channel blocked
due to interference, noise, or collisions

XX
XX

u

WS 2016

Chapter 6 39

Adversarial Jamming
A jammer listens to the open medium and broadcasts in the
same frequency band as the network
• no special hardware required
• can lead to significant disruption of communication at low

cost for the jammer

jammer

WS 2016

Chapter 6 40

Wireless Communication Model
• at each time step, a node may decide to transmit a

packet (nodes continuously contend to send packets)
• a node may transmit or sense the channel at any time

step (half-duplex)
• when sensing the channel a node v may

– sense an idle channel
– receive a packet
– sense a busy channel

v
WS 2016

Chapter 6 41

Single-hop Wireless Network
• n reliable honest nodes and one jammer; all nodes within

transmission range of each other and of the jammer

jammer

WS 2016

Chapter 6 42

Adaptive Adversary
• knows protocol and entire history
• nodes cannot distinguish between adversarial jamming

or a message collision
– i.e., a node senses a busy channel in both cases

• (T,λ)-bounded adversary, 0 < λ < 1: in any time window
of size w ≥ T, the adversary can jam ≤ λw time steps

0 1 … w

steps jammed by adversary
other steps

WS 2016

Chapter 6 43

Adaptive Adversary
Types of adversarial behavior:
• non-reactive adversary: jamming decision independent

of current time step
• reactive adversary: adversary can distinguish between

an idle and a busy channel (successful transmission or
message collision) at the current time step and base its
jamming decision on that

0 1 … w

steps jammed by adversary
other steps

WS 2016

Chapter 6 44

Competitive Analysis
• a protocol is called c-competitive against a (non-)

reactive (T,λ)-bounded adversary if the nodes manage to
perform successful transmissions in at least a c-fraction
of the non-jammed steps (w.h.p. or on expectation), for
any sufficiently large number of steps

successful transmissions
steps jammed by adversary

0 1 … w

other steps (idle channel, message collisions)

WS 2016

Chapter 6 45

Main Result
Theorem 6.1: There is a symmetric local-control MAC
protocol that is
• constant-competitive against any (T,1-ε)-bounded

adversary after Ω (T / ε) steps w.h.p., for any constant
0<ε<1 and any T,

• energy efficient in a sense that it converges to bounded
energy consumption due to message transmissions by
nodes under continuous adversarial jamming (ε=0), and

• recovers quickly from any state.

~

WS 2016

Chapter 6 46

Traditional Defenses
• spread spectrum: frequency hopping over a

wide frequency band
– hard for a jammer to detect the used frequency

fast enough in order to jam it
– Problem: commonly used wireless devices (e.g.,

802.11) have relatively narrow frequency bands

• random backoff:
– adaptive adversary too powerful for MAC

protocols based on random backoff or
tournaments (including the standard MAC
protocol of 802.11)

WS 2016

Chapter 6 47

Simple idea
• each node v sends a message at current time step with

probability pv ≤ pmax, for constant 0 < pmax << 1.
p = ∑ pv (cumulative probability)
qidle = probability the channel is idle
qsuccess = probability that only one node is transmitting

(successful transmission)

Claim 6.2: qidle . p ≤ qsuccess ≤ (qidle . p)/ (1- pmax)
Proof: Exercise.

Thus, if the number of times the channel is idle is equal to
the number of successful transmissions, then p = θ(1) !

WS 2016

Chapter 6 48

Basic Approach
• a node v adapts pv based only on steps when an idle

channel or a successful message transmission are
observed, ignoring all other steps (including all the
blocked steps when the adversary jams)

steps jammed by adversary

idle steps
successful transmissions

steps where collision occurred but no jamming

time

WS 2016

Chapter 6 49

Basic Approach
• a node v adapts pv based only on steps when an idle

channel or a successful message transmission are
observed, ignoring all other steps (including all the
blocked steps when the adversary jams)

steps jammed by adversary

idle steps
successful transmissions

steps where collision occurred but no jamming

time

WS 2016

Chapter 6 50

Naïve Protocol

Each time step:
• Node v sends a message with probability

pv . If v does not send a message then
– if wireless channel is idle then pv = (1+ γ) pv

– if v received a message then pv = pv /(1+ γ)

WS 2016

Chapter 6 51

Problems
Basic problem: Cumulative probability p could be too large.

– almost all time steps blocked due to message
collisions

steps jammed by adversary

idle steps
successful transmissions

steps where collision occurred but no jamming

time

WS 2016

Chapter 6 52

Problems
Basic problem: Cumulative probability p could be too large.

– almost all time steps blocked due to message
collisions

steps jammed by adversary

idle steps
successful transmissions

steps where collision occurred but no jamming

time

WS 2016

Chapter 6 53

Problems
Basic problem: Cumulative probability p too large.
 almost all time steps blocked due to message collisions

Idea: If more than T consecutive time steps without
successful transmissions, then reduce probabilities, which
results in fast recovery of p.

Problem: Nodes do not know T. How to learn a good time
window threshold?
It turns out that additive-increase additive-decrease is the
right strategy!

WS 2016

Chapter 6 54

MAC Protocol
• each node v maintains

– probability value pv ,
– time window threshold Tv , and
– counter cv

• Initially, Tv = cv = 1 and pv = pmax (< 1/24).
• synchronized time steps (for ease of explanation)

• Idea: decrease Tv whenever there is a successful
transmission but wait for an entire time window
(according to current estimate Tv) until you can
increase Tv

WS 2016

Chapter 6 55

MAC Protocol
In each step:
• node v sends a message with probability pv . If v decides

not to send a message then
– if v senses an idle channel, then pv = min{(1+ γ)pv , pmax}
– if v successfully receives a message, then pv = pv /(1+ γ) and

Tv = max{Tv - 1, 1}
• cv = cv + 1. If cv > Tv then

– cv = 1
– if v did not receive a message successfully in the last Tv

steps then pv = pv /(1+ γ) and Tv = Tv +1

We need γ = O(1/(log T + loglog n)) for the protocol to
satisfy Theorem 6.1.

WS 2016

Chapter 6 56

Pros and Cons
Pros:
• no prior knowledge of global parameters

– nodes do not know ε
• no IDs needed

Cons:
• nodes know common rough estimate

γ=O(1/(log T + loglog n))
– allows for superpolynomial change in n and

polynomial change in T over time
• fair channel use is not guaranteed

WS 2016

Chapter 6 57

Example: Low value of p

• pv = 1/n2, Tv = 3, cv = 1

v Wireless Channel (Idle)Sensing

WS 2016

Chapter 6 58

Example: Low value of p

• pv = (1+ γ) /n2, Tv = 3, cv = 2

v Wireless Channel (Idle)Sensing

WS 2016

59

Example: Low value of p
• pv = (1+ γ)2 /n2, Tv = 3, cv = 3

v Wireless Channel (Idle)Sensing

59WS 2016 Chapter 6

Chapter 6 60

Example: Low value of p

• pv = (1+ γ) 3/n2, Tv = 3, cv = 4

v

pv = (1+ γ) 2/n2, Tv = 4, cv =1

Wireless Channel (Jammed)Sensing

WS 2016

Chapter 6 61

Example: Low value of p

• ~ polylog (n) idle steps later:
– pv = c/n, Tv ≤ √T polylog (n)

v Wireless Channel

~

WS 2016

Chapter 6 62

Example: Large p

• pv = 1/c, Tv = 2, cv = 1

v Wireless ChannelSending

Message

WS 2016

Chapter 6 63

Example: Large p

• pv = 1/c, Tv = 2, cv = 2

v Wireless Channel (collision)Sensing

WS 2016

Chapter 6 64

Example: Large p

• pv = 1/c, Tv = 2, cv = 3

v Wireless Channel (Jammed)Sensing

pv = 1/[c(1+ γ)], Tv = 3, cv = 1

WS 2016

Chapter 6 65

Example: Large p

• pv = 1/[c(1+ γ)], Tv = 3, cv = 1

v Wireless ChannelSending

Message

WS 2016

Chapter 6 66

Example: Large p

• pv = 1/[c(1+ γ)], Tv = 3, cv = 2

v Wireless Channel (Collision)Sensing

WS 2016

Chapter 6 67

Example: Large p

• pv = 1/[c(1+ γ)], Tv = 3, cv = 3

v Wireless Channel (Collision)Sensing

WS 2016

Chapter 6 68

Example: Large p

• pv = 1/[c(1+ γ)], Tv = 3, cv = 4

v Wireless Channel (Collision)Sensing

pv = 1/[c(1+ γ) 2], Tv = 4, cv = 1

WS 2016

Chapter 6 69

MAC Protocol
In each step:
• node v sends a message with probability pv . If v decides

not to send a message then
– if v senses an idle channel, then pv = min{(1+ γ)pv , pmax}
– if v successfully receives a message, then pv = pv /(1+ γ) and

Tv = max{Tv - 1, 1}
• cv = cv + 1. If cv > Tv then

– cv = 1
– if v did not receive a message successfully in the last Tv

steps then pv = pv /(1+ γ) and Tv = Tv +1

We need γ = O(1/(log T + loglog n)) for the protocol to
satisfy Theorem 6.1.

WS 2016

Why not at idle steps?

Counterexample
Suppose that v pv is very low.
Repeat indefinitely:

Chapter 6 70

Channel jammed for Tv steps

Channel idle for one step

pv  

Tv  

Channel jammed for Tv steps

no progress!

WS 2016

Chapter 6 71

Proof of Theorem 6.1
• Let N = max {T,n}

Lemma 6.3: The MAC protocol is constant-competitive under
any (T,1-ε)-bounded adversary if the protocol is executed for
Ω(log N  max{T,log3 N/(ε γ2)} / ε) steps w.h.p., for any
constant 0<ε<1 and any T.

WS 2016

Chapter 6 72

Proof sketch of Lemma 6.3
• Show competitiveness for time frames of F =

θ((log N  max{T,log3 N/(ε γ2)} / ε) many steps

If we can show constant competitiveness for any
such time frame of size F, the theorem follows

• We subdivide each frame:

I
I’

f = θ(max{T,log3 N/(ε γ2)})

F = (log N / ε)  f

WS 2016

Chapter 6 73

Proof sketch of Lemma 6.3
• p > 1/(f2(1+γ)2√f) and Tv < √F, in each subframe I’

w.h.p.
• p<12 and p>1/12 within subframe I’ with

moderate probability (so that adaptive
adversarial jamming not successful)

• Constant throughput in I’ with moderate
probability

• Over a logarithmic number of subframes,
constant throughput in frame I of size F w.h.p.

WS 2016

Jade Protocol
Alternative protocol, called Jade, that achieves fairness:

In each step:
• node v sends a message with probability pv . If v decides not to send

a message then
– if v senses an idle channel, then pv = min{(1+ γ)pv , pmax}
– if v successfully receives a message, then pv = pv /(1+ γ) and Tv =

max{Tv - 1, 1}
• cv = cv + 1. If cv > Tv then

– cv = 1
– if v only saw busy steps in the last Tv steps then pv = pv /(1+ γ) and Tv =

Tv +1

We need γ = O(1/(log T + loglog n)) for the protocol to satisfy Theorem
6.1.

WS 2016 Chapter 6 74

References
• Baruch Awerbuch, Andréa W. Richa, Christian Scheideler: A

jamming-resistant MAC protocol for single-hop wireless networks.
PODC 2008: 45-54.

• Andréa W. Richa, Christian Scheideler, Stefan Schmid, Jin Zhang: A
Jamming-Resistant MAC Protocol for Multi-Hop Wireless Networks.
DISC 2010: 179-193.

• Andréa W. Richa, Christian Scheideler, Stefan Schmid, Jin Zhang:
Competitive and Fair Medium Access Despite Reactive Jamming.
ICDCS 2011: 507-516.

• Andréa W. Richa, Christian Scheideler, Stefan Schmid, Jin Zhang:
Competitive and fair throughput for co-existing networks under
adversarial interference. PODC 2012: 291-300.

• Adrian Ogierman, Andréa W. Richa, Christian Scheideler, Stefan
Schmid, Jin Zhang: Competitive MAC under adversarial SINR.
INFOCOM 2014: 2751-2759.

WS 2016 Chapter 6 75

Questions?

WS 2016 76Chapter 6

