
Advanced Distributed
Algorithms and Data Structures

Chapter 7: Clock Synchronization

Christian Scheideler
Institut für Informatik

Universität Paderborn

Overview

• Problem
• Physical Clock Synchronization
• Median rule

WS 2016 2Chapter 7

Clock Synchronization
Clock devices in computers

• RTC (Real Time Clock)
– Battery backed up
– 32.768 kHz oscillator + counter
– Get value via interrupt

• HPET (High Precision Event Timer)
– Oscillator: 10 Mhz … 100 Mhz
– Up to 10 ns resolution
– Schedules threads
– Smooth media playback
– Usually inside processors

WS 2016 Chapter 7 3

By Zac Luzader, Codeczero

https://commons.wikimedia.org/w/index.php?title=User:Codeczero&action=edit&redlink=1

Clock Drift
• Clock drift: random deviation from the nominal rate dependent on

power supply, temperature, etc.

• E.g., TinyNodes have a maximum
drift of 30-50 ppm (parts per million),
which corresponds to up to 0.18s
per hour

WS 2016 Chapter 7 4

1
1+ε

1-ε

Clock Synchronization in Networks
• Network Time Protocol (NTP)
• Precision Time Protocol (PTP)
• Publicly available NTP servers (UTC)

Main problem: estimate propagation delays δ1 and δ2

• t1, t4: time according to A
• t2, t3: time according to B

WS 2016 Chapter 7 5

A

B
t2

t1

t3

t4

δ1 δ2

NTP Protocol

In NTP, average propagation delay δ and clock skew Θ are
calculated as follows:

δ = = =

Θ = + = =

WS 2016 Chapter 7 6

A

B
t2

t1

t3

t4

δ1 δ2

t2-(t1+δ)
2

(t3+δ)-t4
2

(t2-t1)+(t3-t4)
2

(t2-t1)-(t3-t4)

2

δ1+δ2

2
(t4-t1)-(t3-t2)

2
δ1-δ2

2

Propagation Delay
Problem: δ1 and δ2 may differ. How to determine them?
Solution: we need 4 nodes

Hence, we can compute the different propagation delays using, for
example, Gaussian elimination.

WS 2016 Chapter 7 7

A

C

B

D

δDA δAD

δAB

δBA

δAC

δCA

• #cycles of length 2: 6
(only one possible direction)

• #cycles of length 3: 4
(two possible directions)

Hence, 6+2⋅4=14 measurements
possible of which any 12 are linearly
independent, giving 12 linearly
independent equations with 12
unkown variables δXY

Propagation Delay
Problem: messages may experience jitter (variance) in the propagation delay
• Deterministic as well as non-deterministic sources of jitter
• Mostly responsible: the computers

Solution 1: timestamp packets at the MAC layer (some hardware like 1G Intel
cards (82580) can timestamp any packet at the MAC layer)
→ Jitter is usually reduced to about a microsecond

Solution 2: use the estimation strategy in TCP
• Initially, δ is set to the first computed value and V[δ] to δ/2
• For each additional computed δ´ of δ,

V[δ]:=(1-β)V[δ] + β⋅|δ-δ´| (usually, β=1/4)
δ:=(1-α)⋅δ+α⋅δ´ (usually, α=1/8)

• A reasonable upper bound on the next value of δ is then usually computed
by δmax:=δ+4⋅V[δ] (which can be used, for example, to set an upper bound
for waiting for an ACK message)

WS 2016 Chapter 7 8

Clock Synchronization in Networks
Simple strategy:
the nodes select a master node u,
and everybody then synchronizes
with u (using the NTP strategy
together with the MIMD protocol
for handling contention as
described in Chapter 6)

Problem: master node might be faulty or even adversarial.
→ Clock synchronization will fail!

Is there a more robust strategy?

WS 2016 Chapter 7 9

u

Clock Synchronization in Networks

Assumption: message delays are 0.
→ Clock synchronization reduces to distributed consensus

WS 2016 Chapter 7 10

5
8

3
2

3
3

3
3

Distributed Consensus

WS 2016 11Chapter 7

Classical form of distributed consensus problem:
Processes must make a decision.

Formal requirements:
• Agreement: All correct processes

must agree on the same value.
• Validity: For each correct process,

its output must be a valid input of
some process.

• Termination: All processes must eventually decide on an
output value.

5
8

3
2

3
3

3
3

Distributed Consensus
• Fischer, Lynch, Paterson ´83:

Impossible for deterministic protocol to decide in
asynchronous message passing environment if single
Byzantine crash.

• Fischer, Lynch, Merritt ´86:
Impossible for deterministic protocol to decide in synchronous
environment if Byzantine failures by >1/3 of processes.

• Ben-Or ´83,…:
Randomized algorithms can solve consensus with prob →1 in
asynchronous environment for constant fraction of Byzantine
failures.
But: overhead is large

In our case, decisions are not needed. It is sufficient to know that
eventually a protocol reaches a consensus.

WS 2016 12Chapter 7

Distributed Consensus

WS 2016 13Chapter 7

Stabilizing consensus problem:
Processes do not have to make a decision any more.

Formal requirements:
• Stabilization: All correct processes

eventually reach a stable state (resp.
a state remaining stable for poly(n)
many communication rounds).

• Validity: For each correct process,
its value must have been proposed
by a process in some previous round.

• Agreement: for every stable state, all correct processes have
the same value.

5
8

3
2

3
3

3
3

Stabilizing Consensus
Model:
• n players
• Every player knows all others
• Time proceeds in synchronous rounds
• In each round, each player can contact any set

of other players

5 8What´s your number?

8.
WS 2016 14Chapter 7

Stabilizing Consensus
Complexity measures:
• Time: minimize number of communication

rounds till stable consensus is reached
• Work: minimize maximum total work (i.e. number

of messages) needed by a player for this

5 8What´s your number?

8.
WS 2016 15Chapter 7

Distributed Consensus
Basic questions:
• Is it possible to reach consensus with logarithmic

time and work from any state?
• If so, how many adversarial players can be

tolerated?

5 8What´s your number?

8.
WS 2016 16Chapter 7

Distributed Consensus
All n players are honest:
• Minimum rule:

• After O(log n) rounds (and therefore with O(log n)
work), all players have the same number with high
probability (i.e., with probability 1-1/nΩ(1))

x yWhat´s your number?

y.

x:=min{x,y} Random player

WS 2016 17Chapter 7

Distributed Consensus

Minimum rule needs O(log n) rounds, w.h.p.:

: players with minimum value

Pr[min-player contacted]
= |#min-players|/n

WS 2016 18Chapter 7

Distributed Consensus
Minimum rule needs O(log n) rounds, w.h.p.
Proof sketch:
• Xt: number of min-players at round t
• Pr[non-min-player becomes min-player]=Xt/n
• Hence,

E[Xt+1 | Xt] = Xt + (n-Xt)⋅Xt/n
= 2Xt-Xt

2/n ≥ (3/2)Xt
as long as Xt≤n/2.

• Suppose for simplicity that Xt+1≥(3/2)Xt. Then it takes at most
log3/2 n ≤ 2 log n rounds till Xt≥n/2.

• Exercise: show that afterwards the number of non-min-players
shrinks exponentially on expectation.

• Hence, on expectation, all players store the minimum value after
O(log n) rounds. This can also be shown to hold w.h.p. with the help
of the Chernoff bounds.

WS 2016 19Chapter 7

Distributed Consensus

One player adversarial:
• Minimum rule: unlimited runtime.

5 1What´s your number?

5.

at some point in future…

5 1What´s your number?

1.

WS 2016 20Chapter 7

Distributed Consensus

Better: median rule

• O(log n) rounds w.h.p.: all honest
• O(log n loglog n) w.h.p.: < n Byzantine

x y
Number?

y.
x:=median{x,y,z} Random player

z

Random player

Number?

z.

WS 2016 21Chapter 7

All Players Honest

Theorem 7.1: If all players are honest, then the
median rule solves the stabilizing consensus
problem in O(log n) rounds w.h.p.

Proof:
• First, assume that all initial values in {0,1}
• Median rule = majority rule:

out of 3 values (own + two from random
players) choose value of majority

WS 2016 22Chapter 7

All Players Honest
• ∆=|#players with value 0 - #players with value 1|
• Case 1: ∆ ≥ n/3:

O(log log n) rounds till consensus w.h.p.
• Case 2: c n ln n ≤ ∆ < n/3

O(log n) rounds till ∆ ≥ n/3 w.h.p.
• Case 3: ∆ < c n ln n:

- ∆ < c n: Central Limit Theorem: constant
probability for ∆ ≥ c n

- ∆ ≥ c n: Chernoff : constant probability for
∆new ≥ (4/3)∆
Random walk analysis: O(log n) rounds till
∆ ≥ c n ln n w.h.p.

0 1

0 1

0 1

WS 2016 23Chapter 7

All Players Honest
Analysis of case 1:
• Suppose that ∆t0 ≥ n/3 at the beginning of some time step t0
• W.l.o.g. assume that there are more 1s then 0s
• Xt: random variable denoting the number of 0s at the

beginning of round t
• Note that Xt=n/2-∆t/2.
• Pr[value change 0→0 in round t]=1-(1-Xt/n)2

• Pr[value change 1→0 in round t]=(Xt/n)2

• Hence,
E[Xt+1 | Xt] = Xt⋅(1-(1-Xt/n)2) + (n-Xt)⋅(Xt/n)2

= (Xt
2/n)⋅(3-2Xt/n) ≤ 3Xt

2/n
• Using the Chernoff bounds (set µ=3Xt

2/n and δ=1), we get
Pr[Xt+1≥6Xt

2/n] ≤ exp(-3(Xt
2/n)/3) ≤ exp(-Xt

2/n)

WS 2016 Chapter 7 24

All Players Honest
Analysis of case 1 (continued):
• Hence, Xt+1≤6Xt

2/n with high probability, as long as
Xt=Ω(n log n), i.e., the fraction of players with value 0 goes

down from Xt/n to 6(Xt/n)2.
• Thus, when starting with ∆t0≥n/3 and therefore Xt0≤n/3, it takes

just O(log log n) rounds till Xt=Ω(n log n).
• If Xt=O(n log n), then 3Xt

2/n =O(log n). Hence, using again
the Chernoff bounds,

Pr[Xt+1≥(log n)2] = exp(-Ω(log2 n))
• Once Xt=O((log n)2) , 3Xt

2/n =O((log n)2 / n). Hence, the
Markov inequality yields that

Pr[Xt+1≥1] =O((log n)2 / n)
• Therefore, in O(log log n) rounds all players have value 1 with

high probability.
WS 2016 Chapter 7 25

All Players Honest
Analysis of case 2:
• Suppose that ∆t0 ≥ c n log n at the beginning of some time step t0
• W.l.o.g. assume again that there are more 1s then 0s
• Xt: random variable denoting the number of 0s at the beginning of round t
• Note that Xt=n/2-∆t/2=n(1/2-δt), where δt=∆t/(2n).
• Pr[0→0 in round t]=1-(1/2+δt)2

• Pr[1→0 in round t]=(1/2-δt)2

• Hence,
E[Xt+1 | Xt] = Xt⋅(1-(1/2+δt)2) + (n-Xt)⋅(1/2-δt)2

= (1/2-δt)n⋅(1-(1/2+δt)2) + (1/2+δt)n⋅(1/2-δt)2

= (1/2-(3/2) δt+2δt
3)n

= n/2 - ∆t/2 - ((1/2)δt-2δt
3)n

≤ n/2 - ∆t/2 - (1/4)δtn (using δt≤1/3)
≤ Xt - (δt/2)Xt (using Xt≤n/2)
= (1-δt/2)Xt

WS 2016 Chapter 7 26

All Players Honest
Analysis of case 2 (continued):
• Thus, it follows from the Chernoff bounds (choose δ=δt/4 and

µ=(1-δt/2)Xt) that
Pr[Xt+1≥(1-δt/4)Xt] ≤ Pr[Xt+1≥(1+δ)µ]

≤ exp(-δ2µ/3) = n-Ω(c)

• Hence, w.h.p.,
n/2 - ∆t+1/2 ≤ (1-δt/4)(n/2-∆t/2) = n/2 - ∆t/2 - (δt/4)(n/2-∆t/2)

⇔ ∆t+1/2 ≥ ∆t/2 + (δtn)/8 - δt∆t/8 = ∆t/2 + (∆t/2)/8 - δt(∆t/2)/4
⇔ ∆t+1 ≥ (1+1/8 - δt/4)∆t ≥ (1+1/16)∆t

• Hence, after k rounds, ∆ has increased by a factor of at least
(1+1/16)k w.h.p.

• Therefore, at most O(log n) rounds are needed w.h.p. till
∆t≥n/3.

WS 2016 Chapter 7 27

All Players Honest
Analysis of Case 3 (sketch):
• An escape attempt is successful if starting

with some ∆0< c n ln n, some ∆ ≥ c n ln n
is reached while satisfying ∆t+1≥(4/3)∆t along
the way.

• At most O(log n) rounds are consumed by
O(log n) failed attempts to reach ∆ = c n ln n
w.h.p.

• Pr[attempt successful] at least a constant >0
• So at most O(log n) escape attempts fail

w.h.p. (proof: exercise)
WS 2016 28Chapter 7

All Players Honest
• General case: show that after O(log n) rounds we are

left with two different values w.h.p.
• Gravity of process: factor by which presence of its

value increases
• We may pretend that all values are distinct (players

with same value: append player ID)
• Median: gravity 3/2
• Hv: c n ln n players of largest gravity with value v

Lemma 7.2: If at step t a value v has a player in Hv with
gravity <4/3, then at step t+1 either v is gone or it has
a process in Hv of gravity <4/3 w.h.p.

Proof: by reduction to 2-value case v

WS 2016 29Chapter 7

All Players Honest
Lemma 7.3: For any initial value v there is a round

t=O(log n) s.t. one of the cases holds w.h.p.:
– At least one process in Hv has gravity <4/3 or v is

gone
– |Hv| = c n ln n

Consequence: after O(log n) further rounds at most
2 values left w.h.p.

median values that win
WS 2016 30Chapter 7

Some Players Adversarial

2-value case (base case): analysis holds
despite up to n Byzantine players

m-value case: (sketch)
• Phase 1: Cut values into two halves

m/2 m/2

m/2 m/2

O(log log n) rounds

WS 2016 31Chapter 7

Some Players Adversarial

2-value case: analysis holds despite up to
n Byzantine players

m-value case: (sketch)
• Phase 2: Cut larger half into two quarters

m/2

O(log log n) rounds

m/4 m/4

m/2m/4 m/4
WS 2016 32Chapter 7

Some Players Adversarial

2-value case: analysis holds despite up to
n Byzantine players

m-value case: (sketch)
• Phase 3: Larger quarter into two eights

m/2

O(log log n) rounds

m/4 m/8m/8

m/2m/4 m/8m/8
WS 2016 33Chapter 7

Adaptive Adversary
2-value case: analysis holds despite up to n

Byzantine players

m-value case:
• After log m phases: down to 2 values
• O(log m log log n + log n) rounds in total w.h.p.

Proofs: see Benjamin Doerr, Leslie Ann Goldberg,
Lorenz Minder, Thomas Sauerwald, and Christian
Scheideler. Stabilizing consensus with the power
of two choices. In SPAA 2011, pp. 149-158.

WS 2016 34Chapter 7

Adaptive Adversary
Remarks:
1. It is known that if the adaptive adversary has

Ω(n log n) players under its control, then the
median rule takes at least poly(n) many rounds to
solve the stabilizing consensus problem, w.h.p.

2. This holds even if the adversary just knows the
number of players storing a certain value (but not
where the values are stored) and can only reset
the values to values of its choice in a random set
of Ω(n log n) players in each round. Why?

WS 2016 Chapter 7 35

Adaptive adversary
Problem: consensus fragile when having many adversarial players.

Example:
• Suppose that c⋅n out of n players are adversarial for some constant c>1.
• Then Pr[honest player switches to adversarial value] ≥ (c⋅n /n)2 = c/n
• Hence, E[number of honest nodes switching to adv. value] ≥ (n- c⋅n) ⋅ c/n

≈ c.
• Thus, on average we can expect a constant number of honest nodes having

an adversarial value, so the consensus is not stable for poly(n) rounds.

Solution:
• Each player memorizes the values of the last Θ(log n) rounds.
• The output of the player is defined as the median of these values.

Lemma 7.4: If there are at most n adversarial players, then the correct
players reach a consensus that is stable for at least poly(n) many steps w.h.p.
Proof: exercise

WS 2016 Chapter 7 36

Message Delays
Problem: So far we assumed that all message delays are
0. What if we have arbitrary bounded message delays, at
least for most of the nodes?

Assumption: (ε,∆)-bounded DoS-adversary
• For a (1-ε)-fraction of the nodes selected by the

adversary, the adversary may pick arbitrary delays up
to some ∆, where ε>0 is a small constant. Both ∆ and
ε are not known to the protocol.

• For the remaining ε-fraction, the adversary may
choose not to deliver the messages at all (or choose
arbitrarily large delays).

WS 2016 Chapter 7 37

Pseudo Code
Idea: use MIMD-approach
• Start with T:=Tmin.
• Pick two nodes uniformly and independently at

random.
• If both answers received within T time, update

value according to the median rule and set
T:=max{T/(1+γ),Tmin}.

• Otherwise, keep value as it is and set T:=(1+γ)cT.

In the balanced case for T, there are on average c
successful updates vs. one failure.
WS 2016 Chapter 7 38

Pseudo Code
Subject Consensus:

in, v1, v2: Relay
N: Array of Relay {neighbors}
counter, T: Integer
val, val1, val2: Integer

init(input) →
in:=new Relay
val:=input; T:=Tmin
counter:=1
enable(timeout, T)

ack(value) →
if counter=1 then val1:=value
if counter=2 then val2:=value
counter:=counter+1

WS 2016 Chapter 7 39

timeout: true →
if counter>2 then

val:=median(val,val1,val2)
T:=max(T/(1+γ),Tmin)

else
T:=(1+γ)cT

counter:=1
v1:=random(N)
v2:=random(N)
v1←get_val(in)
v2←get_val(in)
enable(timeout, T)

get_val(out) →
out←ack(value)
delete out

Message Delays

Problem: if the (ε,∆)-bounded DoS-
adversary is adaptive, i.e., it can base its
decisions where to set large delays or drop
messages on the values of the nodes, then
it can prevent a consensus to be reached for
any constant ε>0.

WS 2016 Chapter 7 40

Message Delays
Attack strategy of an adaptive (ε,∆)-bounded DoS-adversary:
• Suppose that we have case 2 of the median rule, i.e., for the given round t,

c n ln n ≤ ∆t < εn/5 for a (sufficiently large) constant c and ε>0 as specified for the
adversary, and w.l.o.g. there are fewer nodes with 0 than with 1.

• If the adversary blocks 5∆t nodes with value 1, then the difference ∆´t for the
remaining nodes is 4∆t, and now there are more nodes left with 0 than with 1.

• Let δt=∆´t/(2n) and Xt be the number of non-blocked nodes with value 1 in round t.
• From case 2 we know that E[Xt+1 | Xt] ≤ (1-δt/2)Xt (which still holds if ε>0 is sufficiently

small). For simplicity, suppose that E[Xt+1 | Xt] = (1-δt/2)Xt and that this also holds
w.h.p.

• Then there will be δtXt/2 fewer non-blocked nodes with 1 than before, which means
that there are δtXt/2 more non-blocked nodes with 0 than before.

• If ε>0 is small, it follows that δtXt/2 ≈ δtn/4 = ∆´t/8 = 4∆t/8 = ∆t/2.
• Adding the blocked nodes back, we obtain a difference of ∆t+1=0, so the adversary

can get the system back to a balanced state.

WS 2016 Chapter 7 41

Oblivious Adversary
How about an oblivious (ε,∆)-bounded DoS-adversary?
• An adversary is called oblivious if it does not know the current state

of the system.

Example:
• If the median protocol is run in the TCL, then the adversary has no

means of finding out which TCL stores which value.
• So the adversary just degrades to an oblivious adversary. In fact, it

cannot even change the values. All it can do is to shut down or block
the TCL or delay messages. (Replay attacks can be prevented by
sending a random value with a request, which must be part of the
reply.) Hence, it is just an oblivious DoS-adversary.

Conjecture: There is a constant ε>0 so that the median protocol is
robust against any oblivious (ε,∆)-bounded DoS-adversary.

WS 2016 Chapter 7 42

Physical Clock Synchronization
Problem: once message delays are >0, physical clock
synchronization cannot simply be reduced to the
standard consensus problem since message delays
cause errors in the received physical clock values.

Solution:
• Let δ1 and δ2 be the average message delays of the

two nodes that were randomly chosen in the given
round (see slide 6), and let δ=max{δ1,δ2}.

• Let Θ1 and Θ2 be the clock skews of these nodes.
• If θ:=|median(0,Θ1,Θ2)|≤δ, keep the physical clock

value PHv of v as it is, otherwise change it to PHv+θ.

WS 2016 Chapter 7 43

Physical Clock Synchronization
Solution:
• Let δ1 and δ2 be the average message delays of the

two nodes that were randomly chosen in the given
round (see slide 6), and let δ=max{δ1,δ2}.

• Let Θ1 and Θ2 be the clock skews of these nodes.
• If θ:=|median(0,Θ1,Θ2)|≤δ, keep the physical clock

value PHv of v as it is, otherwise change it to PHv+θ.

Conjecture: For any oblivious (ε,∆)-bounded DoS-
adversary with ε>0 being a sufficiently small constant,
the median rule together with a MIMD approach and the
solution above ensures that in O(∆ log n) time all clocks
are synchronized up to an additive O(∆).

WS 2016 Chapter 7 44

Other Rules

Nearest neighbor rule:

nearest{y,z}: the one with min distance to x

x y
Number?

y.
x:=nearest{y,z} Random player

z

Random player

Number?

z.

x

y

z
WS 2016 45Chapter 7

Other Rules

Advantages of nearest neighbor rule:
• Time synchronization for periodic actions:

no absolute clock value needed any more!

x

y

z

y wins

WS 2016 46Chapter 7

Other Rules

Advantages of nearest neighbor rule:
• Robot alignment:

no compass needed!

x

y

z

y wins

WS 2016 47Chapter 7

Nearest Neighbor Rule

Problem:
• Best bound shown so far on convergence

time for line: O(n2 log n)
• No reasonable bound known for cycle or

higher dimensions…

WS 2016 48Chapter 7

Questions?

WS 2016 49Chapter 7

	Advanced Distributed Algorithms and Data Structures� �Chapter 7: Clock Synchronization
	Overview
	Clock Synchronization
	Clock Drift
	Clock Synchronization in Networks
	NTP Protocol
	Propagation Delay
	Propagation Delay
	Clock Synchronization in Networks
	Clock Synchronization in Networks
	Distributed Consensus
	Distributed Consensus
	Distributed Consensus
	Stabilizing Consensus
	Stabilizing Consensus
	Distributed Consensus
	Distributed Consensus
	Distributed Consensus
	Distributed Consensus
	Distributed Consensus
	Distributed Consensus
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	All Players Honest
	Some Players Adversarial
	Some Players Adversarial
	Some Players Adversarial
	Adaptive Adversary
	Adaptive Adversary
	Adaptive adversary
	Message Delays
	Pseudo Code
	Pseudo Code
	Message Delays
	Message Delays
	Oblivious Adversary
	Physical Clock Synchronization
	Physical Clock Synchronization
	Other Rules
	Other Rules
	Other Rules
	Nearest Neighbor Rule
	Foliennummer 49

