Fundamental Algorithms

Chapter 2: Advanced Heaps

Christian Scheideler
WS 2017

02.11.2017 Chapter 2

Contents

A heap implements a priority queue.
We will consider the following heaps:
e Binomial heap
* Fibonacci heap
e Radix heap

02.11.2017 Chapter 2

Priority Queue

02.11.2017 Chapter 2

Priority Queue

insert(10)

02.11.2017 Chapter 2

Priority Queue

min() outputs 3 (minimal element)

02.11.2017 Chapter 2

Priority Queue

deleteMin()

02.11.2017 Chapter 2

Priority Queue

decreaseKey(12,3)

02.11.2017 Chapter 2

Priority Queue

delete(8)

02.11.2017 Chapter 2

Priority Queue

)

merge(Q.Q’)

/\0

02.11.2017 Chapter 2

Priority Queue

M: set of elements In priority queue

Every element e identified by key(e).
Operations:

* M.build({e,,...,e.}): M:={e,,...,e.}
 M.insert(e: Element). M:=MuU{e}

* M.min: outputs eeM with minimal key(e)

* M.deleteMin: like M.min, but additionally
M:=M\{e}, for that e with minimal key(e)

02.11.2017 Chapter 2 10

Extended Priority Queue

Additional operations:
* M.delete(e: Element): M:=M\{e}

 M.decreaseKey(e:Element, A):
key(e).=key(e)-A
e M.merge(M"): M:=MUM’

Note: in delete and decreaseKey we have
direct access to the corresponding element
and therefore do not have to search for it.

02.11.2017 Chapter 2 11

Why Priority Queues?

e Sorting: Heapsort
o Shortest paths: Dijkstra’s algorithm
 Minimum spanning trees: Prim’s algorithm

e Job scheduling: EDF (earliest deadline
first)

02.11.2017 Chapter 2 12

Why Priority Queues?

Problem from the ACM International Collegiate Programming
Contest:

A number whose only prime factors are 2,3,5or 7 is called a
humble number. The sequence 1, 2, 3,4, 5,6, 7, 8,9, 10, 12,
14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble
numbers.

e Write a program to find and print the n-th element in this
sequence

Solution: use heap to systematically generate all humble
numbers, starting with heap just containing 1. Repeatedly do:

e X:=M.deleteMin

* M.insert(2x); M.insert(3x); M.insert(5x), M.insert(/x)
(assumption: only inserts element if not already in heap)

02.11.2017 Chapter 2 13

Priority Queue

* Priority Queue based on unsorted list:
— build({e,,...,e,}): time O(n)
— Insert(e): O(1)
— min, deleteMin: O(n)
* Priority Queue based on sorted array:
— build({ey,...,e }): time O(n log n) (needed for sorting)
— Insert(e): O(n) (rearrange elements in array)
— min, deleteMin: O(1)

Better structure needed than list or array!

02.11.2017 Chapter 2 14

Binary Heap

ldee: use binary tree instead of list

Preserve two Invariants:

 Form invariant:complete
binary tree up to lowest

level
 Heap invariant:
key(e,)<min{key(e,),key(e,)} /" N\

(o)

02.11.2017 Chapter 2

Binary Heap

Example:

Heap invariant—,

o

02.11.2017 Chapter 2

16

Binary Heap

Representation of binary tree via array:

N
=
w0 () GO G

\
(o) (o)

e, | e, | e |le;| e | e | e | e | €g

02.11.2017 Chapter 2

Binary Heap

Representation of binary tree via array:

e;|le, | e;|le, | e | e | e | e | €

 H: Array [1..N] of Element (N > #elements n)
e Children of e in H[i]: in H[2i], H[2i+1]

 Form invariant: H[1],...,H[n] occupied
 Heap invariant: for all ie{2,...,n},

key(H[i])=key(H[[1/2]])

02.11.2017 Chapter 2

18

Binary Heap

Representation of binary tree via array:

7| € 0

€ | € | € s | € | €

Insert(e):
 Form invariant: n:=n+1; H[n]:=e
 Heap invariant: as long as e Is In H[k] with

«>1 and key(e)<key(H[|k/2|]), switch e
with parent

02.11.2017 Chapter 2 19

Insert Operation

Insert(e: Element):
n:=n+1; H[n]:=e
heapifyUp(n)

heapifyUp(l: Integer):
while i>1 and key(H/i])<key(H[|i/2]]) do
H[i] < H[|i/2]]
1.=|1/2]

Runtime: O(log n)

02.11.2017 Chapter 2 20

Insert Operation - Correctness

@ /®\
@ e

@/é @/: o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 21

Insert Operation - Correctness

/@ /@\

@/ @/@ qc @/@

e

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 22

Insert Operation - Correctness

/@ /@\

@ 23

\
o6

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 23

Insert Operation - Correctness

© @
/ \

=
S @&2

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 24

Binary Heap

deleteMin:
 Form invariant: H[1]:=H[n]; n:=n-1
 Heap invariant: start with e in H[1].

Switch e with the child with minimum key
until H[k]<min{H|[2k],H[2k+1]} for the

current position k of e or e is in a leaf

02.11.2017 Chapter 2 25

Binary Heap

deleteMin(): Runtime: O(log n)
e:=H[1]; H[1]:=H[n]; n:=n-1
heapifyDown(1)
return e

heapifyDown(i: Integer):

while 2i<n do //11s not a leaf position
If 2i+1>n then m:=21 // m: pos. of the minimum child
else

If key(H[2i])<key(H[2I+1]) then m:=2i
else m:=2i+1
If key(H[i])<key(H[m]) then return // heap inv. holds
H[i] <> H[m]; I:I=m

02.11.2017 Chapter 2

deleteMin Operation - Correctness

(3)
aom oAl wm
(10) (o) (12) (3s) (10) (o) (12) (15)

i o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 27

deleteMin Operation - Correctness

(s)
aowm o~ w W
(10) (o) (12) (3s) (10) (o) (12) (15)

o o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 28

deleteMin Operation - Correctness

© ©

7N\ 7N

o
ORGIGROI I RRCRG

o o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant

02.11.2017 Chapter 2 29

Binary Heap

puild{e,.,....e }):

* Naive implementation: via n insert(e)
operations. Runtime O(n log n)

e Better implementation:

puild({e,,...,e.}):

for 1:=|n/2| downto 1 do
heapifyDown(li)

 Runtime (with k=[log n]): |
O(zlskk 2|(k'|)) = O(Zk ijl j/ZJ) - O(n)

02.11.2017 Chapter 2

30

Binary Heap

Call HeapifyDown(i) for i=|n/2| down to 1:

AA

Invariant: V|>i: H[j| min w.r.t. subtree of Hj]

02.11.2017 Chapter 2

31

Binary Heap

Runtime:

* build({e,,...,e,}): O(n)
 Insert(e): O(log n)

e min: O(1)

e deleteMin: O(log n)

02.11.2017 Chapter 2

32

Extended Priority Queue

Additional Operations:

M.delete(e: Element): M:=M\{e}

M.decreaseKey(e:Element, A): key(e).=key(e)-A
M.merge(M"): M:=MUM’

delete and decreaseKey can be implemented
with runtime O(log n) In binary heap (if position
of e Is known)

merge Is expensive (O(n) time)!

02.11.2017 Chapter 2 33

Binomial Heap

Binomial heap Is based on binomial trees
Binomial tree has to satisfy:
e Form invariant (r: rank):

r=0 r=1 r—r+l

DO

 Heap invariant (key(Parent)<key(Ch|Idren))

02.11.2017 Chapter 2

Binomial Heap

Examples of correct Binomial trees:

r=3

&S

02.11.2017 Chapter 2 35

Binomial Heap

Properties of Binomial trees:

r=0 r=1 r—r+l
) i ﬁ/
* 72" nodes number of neighbors

 maximum degree r (at root)

e root deleted: Binomial tree decomposes
Into Binomial trees of rank O to r-1

02.11.2017 Chapter 2

36

Binomial Heap

Example for decomposition into Binomial
trees of rank O to r-1
@ rank 3

0

ranks 2
(1) (&)
2f W (&
24)

02.11.2017 Chapter 2

37

Binomial Heap

Binomial Heap:
 linked list of Binomial trees, ordered by ranks

e for each rank at most 1 Binomial tree
e pointer to root with minimal key

TN

numbers: ranks

02.11.2017 Chapter 2

38

Binomial Heap

Data type:

parent: binTree
prev: binTree
next: binTree
key: Integer
rank: Integer
Children: binTree

oA A /\
numbers: ranks

02.11.2017 Chapter 2 39

binTree:

Binomial Heap

Example of a correct Binomial heap:

min-pointer
oL@

L

/

Binomial tree of
rank r=1

02.11.2017 apter 2

40

Binomial Heap

Example of a correct Binomial heap:

parent: L parent: L parent: L
L prev next «— prev next '« » prev next «—
key: 9 rank: O key: 3 rank: 1 key: 4 rank: 3
children: L children: children:
) // !
v I
parent: parent: parent:
—>| prev next < > prev next <«— prev next «—
key:15 rank: O key:10 rank: O key: 6 rank: 1
children: L children: L children:

1

02.11.2017 Chapter 2 41

Binomial Heap

Merge of Binomial heaps H, and H.;:

A : like binary addition
o & k
> 7
ranks 10100100

& A A M + 101100
A

A 11010000
02.11.2017 : 42

Example of Merge Operation

s "
.
— numbers denote

E n the ranks
M& sur tthe heap H,

Invariant 4 served
by the merging!
A

é A outcome

02.11.2017 Chapter 2 43

Binomial Heap

Runtime of merge operation: O(log n) because

* the largest rank in a Binomial heap with n elements at most
log n (See analogy with binary numbers), and

e at most one Binomial tree iIs allowed for each rank value

B,;: Binomial tree of rank i

 Insert(e): merge existing heap with B, containing only element
e

* min: use min-pointer, time O(1)

» deleteMin: let the min-pointer point to the root of B,.

Deleting the root in B, results in Binomial trees B,...,B, ;
These have to be merged back into Binomial heap.

Thus, the insert and deleteMin operations can be reduced to the
merge operation, which implies a runtime of O(log n).

02.11.2017 Chapter 2 44

Example of Insert Operation

Insert(8):

02.11.2017 Chapter 2

45

Example of Insert Operation

Insert(8):

02.11.2017 Chapter 2

46

Example of Insert Operation

Insert(8):

02.11.2017 Chapter 2

47

Example of Insert Operation

Outcome of Insert(8):

02.11.2017 Chapter 2

48

Binomial Heap

 decreaseKey(e,A): perform heapifyUp
operation in Binomial tree starting with e,
update min-pointer. Time O(log n)

. delete(e) (min-pointer does not point to e)

set key(e):= -0 and perform heapifyUp
operation starting with e until e Is In a root;
then continue like in deleteMin when
removing e (but without updating the min-
pointer!).

Time O(log n)

02.11.2017 Chapter 2

49

Example of decreaseKey

decreaseKey(24,19):

02.11.2017 Chapter 2

Example of decreaseKey

decreaseKey(24,19):

02.11.2017 Chapter 2

Example of decreaseKey

decreaseKey(24,19):

02.11.2017 Chapter 2

Example of decreaseKey

Outcome of decreaseKey(24,19):

02.11.2017 Chapter 2

Fibonacci Heap

 Based on Binomial trees, but it allows lazy
merge and lazy delete.

* Lazy merge: no merging of Binomial trees
of the same rank during merge, only
concatenation of the two lists

e Lazy delete: creates incomplete Binomial
trees

02.11.2017 Chapter 2 54

Fibonacci Heap

Tree in a Binomial heap:

(4)

02.11.2017 Chapter 2

55

Fibonacci Heap

Tree in a Fibonacci heap:

Every parent only
knows first and last

child of list Every child

knows Its
parent

List of siblings

02.11.2017 Chapter 2 56

Fibonacci Heap

Tree in a Fibonacci heap:

(4)

Data type fibTree: /
({6 —(10;

parent: fibTree
prev: fibTree
next: fibTree @ @ e

key: Integer
rank: Integer

mark: {0,1}
Children: fibTree @

02.11.2017 Chapter 2

57

Fibonacci Heap

Lazy merge of

min

AA//?\ : égg

results In }nin
AR EA

02.11.2017 Chapter 2

58

Fibonacci Heap

Lazy delete:

02.11.2017 Chapter 2

59

Fibonacci Heap

Lazy delete:

11 @
G@
Problem: tree should not O

lose too many nodes that way
— IS checked with variable mark

20

02.11.2017 Chapter 2

60

Fibonacci Heap

For any node v in the Fibonacci heap: parent: fibTree
 parent(v) points to the parent of v prev: fibTree

(lf V IS a root, then parent(V):J_) next: fibTree
 prev(v) and next(v) connect v to its key: Integer

preceding and succeeding siblings rank: Integer
 key(v) stores the key of v mark: {0,1}

- : Children: fibTree

« rank(v) is equal to the number of children

of v

« mark(v) stores how many children v has lost due to a lazy
de{ette O()unless v IS a root node, where mark(x) will always be
set to

e Children(v) points to the first child in the childlist of v (this is
sufficient for the data structure, but for the formal presentation
of the Fibonacci heap we assume that v knows the first and
last child in its childlist)

02.11.2017 Chapter 2 61

Fibonacci Heap

Fibonacci heap Is a list of Fibonacci trees
Fibonacci tree has to satisfy:

 Form Invariant:
Every node of rank r has exactly r children.

 Heap invariant:
For every node v, key(v)<key(children of v).

The min-pointer points to the minimal key
among all keys in the Fibonacci heap.

02.11.2017 Chapter 2 62

Fibonacci Heap

Operations:

merge: concatenate root lists, update min-
ointer.
ime O(1)
Insert(x): add x as B, (with mark(f):O) to root
list, update mln-pom%er. Time O(1)
mi_n(z_: output element that the min-pointer Is
pointing to. Time O(1)

deleteMin(), delete(x), decreaseKey(x,A): to be
determined...

02.11.2017 Chapter 2 63

Fibonacci Heap

deleteMin(): This operation will clean up the Fibonacci
heap. Let the min-pointer point to x.

Algorithm deleteMin():
e remove x from root list

 for every child c in child list of x, set parent(c):=_L
and mark(c):=0 // mark not needed for root nodes

 Integrate child list of x into root list

* while =2 trees of the same rank i do
merge trees to a tree of rank i+1
(like with two Binomial trees)

e update min-pointer

02.11.2017 Chapter 2 64

Fibonacci Heap

Merging of two trees of rank |
(1.e., root has i children):

I+1 children, thus rank i+1
i i ™~ Root with
smaller key

02.11.2017 Chapter 2 65

Fibonacci Heap

Efficient searching for roots of the same rank:

« Before executing the while-loop, scan all roots and store
them according to their rank in an array:

Rank: | 0

314/ 5|,6|7)|8
 Merge like for Binomial trees starting with rank O until the
maximum rank has been reached (like binary addition)

2

:

02.11.2017 Chapter 2 66

Fibonacci Heap

Algorithm delete(x):
If X IS min-root then deleteMin()
else
y.=parent(X)
delete x
for every child c in child list of x, set parent(c):=_L and
mark(c):=0
add child list to root list
while y-=NULL do // parent node of x exists
rank(y):=rank(y)-1 // one more child gone
If parent(y)=_ then return // y is root node: done
If mark(y)=0 then { mark(y):=1; return }
else // mark(y)=1, so one child already gone
X:=y; y.=parent(x)
move x with its subtree into the root list
parent(x):=_L; mark(x):=0 // roots do not need mark

02.11.2017 Chapter 2

67

Fibonacci Heap

Example for delete operations: (@ : mark=1)

02.11.2017 Chapter 2 68

Fibonacci Heap

Algorllt:)h(rrs decreaseKey(x,A):
X
%llmve X With its subtree into root list
E arent(x& NULL mark(x):=
ey(x):=key(x)-A
update mln ointer _
Whl|e yqtNU Ldo // arent node of x exists

rank(y): —rankbh i one more child gone

If parent en return // y IS root node: done
If mar z =0 then mark(y 1, return}
else mark y) , SO one child already gone

P(x
moveyx W|th Its subtree into the root list
parentgx) =NULL
mark(x):=0 // roots do not need mark

02.11.2017 Chapter 2 69

Fibonacci Heap

Runtime:

e deleteMin(), delete(x):
O(max. rank + #tree mergings)

« decreaseKey(x,A):
O(1 + #cascading cuts)
l.e., #relocated marked nodes

We will see: runtime of deleteMin can reach ®(n),
but on average over a sequence of operations
much better (even in the worst case).

02.11.2017 Chapter 2

70

Amortized Analysis

Consider a sequence of n operations on an
initially empty Fibonacci heap.

e Sum of individual worst case costs too high!
e Average-case analysis does not mean much

e Beftter: amortized analysis, i.e., average cost of
operations in the worst case (i.e., a sequence of
operations with overall maximum runtime)

02.11.2017 Chapter 2 71

Amortized Analysis

Recall:

Theorem 1.5: Let S be the state space of a
data structure, s, be its initial state, and let
0:S—R., be a non-negative functlon Given
an operation X and a state s with s *> s, we
define

Ax(S) = Tx(S) + (9(S') - #(8))

Then the functions A, (s) are a family of
amortized time bounds.

02.11.2017 Chapter 2 12

Amortized Analysis

~or Fibonacci heaps we will use the
potential function
bal(s):= #trees + 2-#marked nodes In

in state s /

node v marked: mark(v)=1

02.11.2017 Chapter 2 73

Fibonacci Heap

Lemma 2.1: Let x be a node in the Fibonacci heap
with rank(x)=k. Let the children of x be sorted in
the order in which they were added below x.
Then the rank of the I-th child is =1-2.

Proof:

 When the i-th child is added, rank(x)=i-1.

* Due to the tree merging rule, the i-th child must
have also had rank i-1 at this time.

o Afterwards, the i-th child loses at most one of its
children, I1.e., Its rank I1s >1I-2.

02.11.2017 Chapter 2 74

Fibonacci Heap

Theorem 2.2: Let x be a node in the Fibonacci
heap with rank(x)=k. Then the subtree with root
x contains at least ., elements, where F, is the
k-th Fibonacci number.

Definition of Fibonacci numbers:
c Fp=0andF, =1

 F,=F ,+F , forall k>1
Hence, F ., =1+ > _“F,.

02.11.2017 Chapter 2 75

Fibonacci Heap

Proof of Theorem 2.2:

e Letf, be the minimal number of elements
In a tree of rank k.

e From Lemma 2.2 we get: ~

f, = f +f -+, .+, +1+1
k = Tk2T k-3 0 e

1. child

* Moreover, f,=1 and f,=2

e |t follows from the Fibonaccl numbers:
1:k = |:k+2

02.11.2017 Chapter 2

76

Fibonacci Heap

e Itis known that F,, > ®**2 with

d=(1+V5)/2 = 1,618034

e Hence, a tree of rank k in the Fibonacci
heap contains at least 1,612 nodes.

* Therefore, a Fibonacci heap with n
elements contains trees of rank at most
O(log n) (like in a Binomial heap)

02.11.2017 Chapter 2

I

Fibonacci Heap

* {: time for operation |

» bal: value of bal(s) after operation i
(bal(s) = #trees + 2-#marked nodes)

* a;: amortized runtime of operation |

Amortized runtime of operations:

e Insert: t=0O(1) and Abal=+1, so a=0(1)
 merge: (=0(1) and Abal=0, so a=0(1)
 min: t=0(1) and Abal=0, so a=0(1)

02.11.2017 Chapter 2

78

Fibonacci Heap

Theorem 2.3: The amortized runtime of deleteMin() is
O(log n).
Proof:

 Insertion of child list of x into root list:
Abal <rank(x) — 1
since #trees Increases by rank(x)-1 and some marks
might be set from 1 to O

 Every merging reduces #trees by 1:
Abal = - #mergings

 Because of Theorem 2.2 ﬁrank at most O(log n)) we get:
#mergings = #trees — O(log n)

» Altogether: Abal, = rank(x) - #trees + O(log n)

* Real runtime (in appropriate time units):

[= #trees + O(rank(x)) = #trees + O(log n)
 Amortized runtime:;

a; = t; + Abal, = O(log n)

02.11.2017 Chapter 2 79

Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) Is
O(log n).
Proof: (x is not the min-element — otherwise like Th. 2.3)

e [nsertion of child list of x into root list:
Abal < rank(x)

 Every cascading cut (i.e., relocation of a marked node)
Increases the number of trees by 1.:
Abal = #cascading cuts

« Every cascading cut removes one marked node:
Abal = -2-#cascading cuts

e The last cut possibly introduces a new marked node:
Abal € {0,2}

02.11.2017 Chapter 2 80

Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) Is

O(log n).
Proof:
« Altogether:

Abal; < rank(x) - #cascading cuts + O(1)
= O(log n) - #cascading cuts

because of Theorem 2.2

e Real runtime (in appropriate time units):
[, = O(log n) + #cascading cuts

e Amortized runtime;:
a; =t + Abal, = O(log n)

02.11.2017 Chapter 2

81

Fibonacci-Heap

Theorem 2.5: The amortized runtime of decreaseKey(x,A)
IS O(1).
Proof:

e Every cascading cut increases the number of trees by 1.
Abal = #cascading cuts

« Every cascading cut removes a marked node:
Abal < -2-#cascading cuts

 The last cut possibly creates a new marked node:
Abal € {0,2}

« Altogether: Abal; = - #cascading cuts + O(1)
e Real runtime: [; = #cascading cuts + O(1)
 Amortized runtime: a, =t + Abal, = O(1)

02.11.2017 Chapter 2 82

Summary

Runtime Binomial Heap |Fibonacci Heap
Insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.
delete O(log n) O(log n) amor.
merge O(log n) O(1)
decreaseKey |O(log n) O(1) amor.

02.11.2017

Chapter 2

83

Radix Heap

Assumptions:

1. All keys are integer values and have a
distance of at most C from each other

2. Insert(e) only inserts elements e with
key(e)=K. ., (K,,: minimum key)

Second assumption: we are searching for a
monotonic priority queue

02.11.2017 Chapter 2 84

Radix Heap

Let B[-1..K] be array of lists B[-1] to B[K], where
K=1+|log C].

°e

Invariant: Every e stored in B[min(msd(k,,,,key(e)),K)]

* msd(k,,,key(e)): maximum bit position at which
binary representations of k., and key(e) differ

(-1: no difference)
02.11.2017 Chapter 2 85

Radix Heap

Example for msd(k,..k):

e letk. =17, orin binary form, 10001

o k=17: msd(K;,,K)=-1

* k=18:1In binary 10010, so msd(k,,,k)=1
e k=21:1In binary 10101, so msd(k,,,k)=2
e k=52:1In binary 110100, so msd(k,,,,K)=5

Computation of msd for a=Db:
msd(a,b)=|log(a®b)|
where © denotes bit-wise xor.

Time: O(1) (with appropriate machine instruction set)

02.11.2017 Chapter 2 86

Radix Heap

min():
e output k., In B[-1]
Runtime: O(1)

02.11.2017 Chapter 2

87

Radix Heap

insert(e): (key(e)=k.,)

e :=min{msd(k,...key(e)), K}
e store e in BJl]

Runtime: O(1)

delete(e): (key(e)>k,,,, otherwise call deleteMin())
« Remove e from its list BJj]
Runtime: O(1)

decreaseKey(x,A): (key(e) - A = k., , A>0)
« call delete(e) and insert(e) with key(e):=key(e) - A
Runtime: O(1)

02.11.2017 Chapter 2

88

Radix Heap

deleteMin():

« If B[-1] Is occupied, remove some e from B[-1]
(otherwise the heap is empty and we are done)

 find minimal i so that B[i|= < (if there is no such i or i=-1
then we are done)

e determine k., in BJi]

 distribute nodes in B[i] among BI[-1],...,B[i-1] w.r.t. the
new K.,

Important: for all e in BJj], =i, it still holds that
msd(k...key(e))=], I.e., they do not have to be moved.

02.11.2017 Chapter 2

89

Radix Heap

1101, 2345|6738
I L I
2 4119 260
L I
511 381
L
6 | |14

We consider a sequence of deleteMin operations

02.11.2017 Chapter 2

Radix Heap

9 11| |14 260

381

We consider a sequence of deleteMin operations

02.11.2017 Chapter 2

Radix Heap

Lemma 2.6: Let B[] be the minimal non-
empty list, i=0. Let x,,, be the minimal key
in B[i]. Then msd(x,,,,x)<I for all keys x In

Bli]. all elements in B[i] move to the left I

Proof:
* X=X.. obviously true (x placed in B[-1])

* X#+X.,i,- We distinguish between two cases:

1) <K, 2) =K

02.11.2017 Chapter 2 92

Radix Heap

Case I<K:
bit position: |
old k.., a 0 [
)Xmm>kmm
Xmin a 1 <
) X, X 0 BII]
X a 1 /

Thus, msd(x,,,x)<I.

02.11.2017 Chapter 2

Radix Heap

Fall I=K:
bit position: j>K h 0
)Xmm>kmm
Xmm a 1‘/ b 0 N\
)X>Xmm
X a 1 b 1 /

e Itholds: k., < x,, <x<k.,,+C and 2">C, so x
and x.,,, must have identical prefix al.

02.11.2017 Chapter 2 94

Radix Heap

Case I=K:
bit position: j>K h 0
)Xmm>kmm
Xmm a 1‘/ b 0 N\
)X>Xmm
X a 1 b 1 /

o Leth=msd(x,,,X). Since 2“>C, h must be less
than K.

02.11.2017 Chapter 2

Radix Heap

°g

Consequence:

* Every element can only be moved at most K
times in the Radix heap (due to deleteMin or
decreaseKey operations)

 Insert(): amortized runtime O(log C).

02.11.2017 Chapter 2

96

Summary

Runtime Fibonacci Heap |Radix Heap
Insert O(1) O(log C) amor.
min O(1) O(1)
deleteMin O(log n) amor. |O(1) amor.
delete O(log n) amor. |O(1)

merge O(1) 27?7
decreaseKey [O(1) O(1)

02.11.2017

Chapter 2

97

Extended Radix Heap

Assumptions:

1. All keys are integer values and have a
distance of at most C from each other

2. Inserf(e)enrhInserts e 'S E WIth
ke =k (K minimomkey)

min min*

Second assumption: monotone priority
gueue

02.11.2017 Chapter 2 98

Extended Radix Heap

0 2 K
At least one é
normal

element

super elements at the end

(O : “super element” e, which contains a Radix heap with

K.i.=key(e) where k., IS the smallest value in the
Radix heap of e and B_[-1] has =1 normal element.

Note: super elements may contain super elements

02.11.2017 Chapter 2 99

Extended Radix Heap

Example:

@

;élZB....K @

G~

02.11.2017 Chapter 2 100

Extended Radix Heap

Merge of two extended Radix heaps B
and B’ with k.. (B) < k.,i,(B):
(Case k.,..(B) > k...(B) : flip Band B)
e transform B’ into a super element e with
key(e) - kmin(B,)
e call insert(e) on B
Runtime: O(1)

02.11.2017 Chapter 2 101

Extended Radix Heap

Example of a merge operation:

: e

-1,011(2]3| ... K

I I

02.11.2017 Chapter 2 102

Extended Radix Heap

Insert(e):
» key(e)=k.,,: as In standard Radix heap

o otherwise, merge extended Radix heap
with a new Radix heap just containing e

Runtime: O(1)

min(): like in a standard Radix heap
Runtime: O(1)

02.11.2017 Chapter 2 103

Extended Radix Heap

deleteMin():

« Remove normal element e from B[-1]
(B: Radix heap at highest level)

 If B[-1] does not contain any elements, then
update B like in a standard Radix heap (l.e.,
dissolve smallest non-empty bucket BJi])

ot contain normal elements any

more, then takethe first super element e’ from
Bl-1] and merge the\ists of e’ with B

(then there IS again a notmal element in B[-1]!)

Runtime: O(log C) + time for updates

02.11.2017 Chapter 2 104

Extended Radix Heap

deleteMINQ): 1o 15 Ta T Tx
% @ @
(@
11213 K éo L :

1|0
merge Radix heap of @
into top Radix heap

-1
02.11.2017

Chapter 2 105

Extended Radix Heap

deleteMin():

560 b

G~

02.11.2017 Chapter 2 106

Extended Radix Heap

delete(e):
Case 1: key(e)>k,, for heap of e:
 like delete(e) in a standard Radix heap
Case 2: key(e)=k., for heap of e:
» like deleteMin() above but on heap of e
e if e was in Radix heap of super element e’:
— If €’ Is afterwards empty, then remove €’ from heap B’
containing €’
— If the minimum key in e’ has changed, then move e’ to its
correct bin in B’

Since there is a normal element in B’[-1], both cases have no
cascading effects!

Runtime: O(log C) + time for updates

02.11.2017 Chapter 2 107

Extended Radix Heap

delete(10):

23] K

55@5
(4)

-1 0

;élZB....K £

merge Radix heap of @
into top Radix heap

z%{

02.11.2017 Chapter 2 108

Extended Radix Heap

- 1
-1 0 ;
merge Radix heap of @
into top Radix heap

delete(10):

=
o

o -

02.11.2017 Chapter 2 109

Extended Radix Heap

;élZBWK @

merge Radix heap of @

delete(10):

into top Radix heap 1101112131K

02.11.2017 Chapter 2 110

Extended Radix heap

decreaseKey(e,A):

o call delete(e) in heap of e

« setkey(eT: (e)-A

« call insert(e) on highest Radix heap

Runtime: O(log C) + time for updates

Amortized analysis: similar to Radix heap

e eachtime a normal element e is inserted, the potential is increased
by K+pos(e) (to compensate for pos(e) left moves of itself and a
right move of its superelement e if it is removed as the minimum
element in the Radix heap of e)

e eachtime a superelement e Is inserted, the potential is increased by
K+pos(e) (to compensate for pos(e) left moves and the merging of
up to K lists in its Radix heap if it is removed from B[-1] in deleteMin)

02.11.2017 Chapter 2 111

Summary

Runtime Radix heap ext. Radix heap
Insert O(log C) amor. |O(log C) amor.
min O(1) O(1)

deleteMin O(1) amor. O(1) amor.
delete O(1) O(1) amor.
merge 27?7 O(log C) amor.
decreaseKey |O(1) O(log C) amor.

02.11.2017 Chapter 2 112

Contents

 Binomial heap
* Fibonacci heap
e Radix heap
* Applications

02.11.2017 Chapter 2 113

Shortest Paths

#mﬂhﬂ

. -

- p

R
‘ b -

RS

. -

Central question: Determine fastest way to get from s to t.

02.11.2017 Chapter 4 114

Shortest Paths

Cost of p:
c(p)=-1+(-2)+5=2

L(s,v): distance fromsto v

o no path fromstov

u(s,v) = < -o path of arbitrarily low cost fromstov /

_ min{ c(p) | p Is a path from s to v}
02.11.2017 Chapter 4 115

Dijkstra’s Algorithm

Consider the single source shortest path problem
(SSSP), I.e., find the shortest path from a source
s to all other nodes, in a graph with arbitrary
non-negative edge costs.

W

Basic idea behind Dijkstra’s Algorithm:
visit nodes In the order of their distance from s

02.11.2017 Chapter 4 116

Dijkstra’s Algorithm

 |nitially, set d(s):=0 and d(v):=« for all other
nodes. Use a priority queue g in which the
priorities represent the current distances d(v)
from s. Add s to q.

e Repeat until g is empty:
Remove node v with lowest d(v) from g (via
deleteMin). For all (v,w)eE, set
d(w) = min{d(w), d(v)+c(v,w)}. If w has not been
In g so far, insert w into d. In order to repair g In
case of a change of d(w), perform a
decreaseKey operation.

02.11.2017 Chapter 4 117

Dijkstra’s Algorithm

Example: (@ : current, @ : done)

1
2 '@ 1
2 \
1

4
N
~(8)-
i 3 5 . A’

02.11.2017 Chapter 4 118

Dijkstra’s Algorithm

Procedure Dijkstra(s: Nodeld)
d=<o0,..., o> NodeArray of RU{-o0,x}
parent=<41,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u:=q.deleteMin() // u: node with min distance
foreach e=(u,v)cE do
If d[v] > d[u]+c(e) then // update d[v]
If d[v]=co then qg.insert(v) // vin g?
parent[v]:=u
/[d[v] set to d[u]+c(e)
g.decreaseKey(v, d[v]-(d[u]+c(e)))

02.11.2017 Chapter 4 119

Dijkstra’s Algorithm

* To,(n): runtime of operation Op on data structure
with n elements

Runtime:
Tpijkstra = O(N(Tpeletemin(M+ Tingert(N)) + M-Tecreaserey(N))
Binary heap: all operations have runtime O(log n), so
Thikstra = O((M+n)log n)
Fibonacci heap: amortized runtimes
‘ TDeIeteMin(n):Tlnsert(n):O(IOg n)

° TdecreaseKey(n):O(l)
 Therefore, Tpjqq = O(nlog n +m)

02.11.2017 Chapter 4 120

Dijkstra’s Algorithm

Remark: Dijkstra’s Algorithm does not need a
general priority queue but only a monotonic
priority queue (i.e., minima are monotonically

Increasing)

If all edge costs are integer values in [0,C], use a
Radix heap. Its amortized runtimes are

° _DeleteMin(n):TdecreaseKey(n):O(l)

° “Insert(n):O(IOg C)

« Thus in this case, Ty, = O(n log C + m)

02.11.2017 Chapter 4 121

Minimal Spanning Tree

Problem: Which edges do | need to take In
order to connect all nodes at the lowest
possible cost?

02.11.2017 Kapitel 11 122

Minimal Spanning Tree

Input:
e Undirected graph G=(V,E)
 Edge costs c.E—> R,

Output:

e Subset T<E so that the graph (V,T) is connected
and c(T)=2._ c(e) is minimal

« T always forms a tree (if c Is positive).

e Tree over all nodes in V with minimum cost:
minimal spanning tree (MST)

02.11.2017 Kapitel 11 123

Prim’s Algorithm

Procedure Prim(s: Nodeld)
d=<o0,..., o> NodeArray of RU{-o0,x}
parent=<4,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u:=q.deleteMin() // u: node with min distance
foreach e=(u,v)€E do
If d[v] > c(e) then // update d|v]
d[v]=co then g.insert(v) // vin g7
parent[v] =u
/[d[v] set to c(e)
g.decreaseKey(v, d[v]-c(e))

02.11.2017 Chapter 4 124

Prim’s Algorithm

* To,(n): runtime of operation Op on data structure
with n elements

Runtime:
Trim = O(N(Tpeietemin(M* Tinsert(N)) + M-Tyecreaserey())

Binary heap: all operations have runtime O(log n), so
TPrim - O((m+n)|og n)

Fibonaccl heap: amortized runtimes

° TDeIeteMin(n):Tlnsert(n):O(IOg n)

° TdecreaseKey(n):O(l)
e Therefore, T, = O(n log n + m)

02.11.2017 Chapter 4 125

Next Chapter

Topic: Search structures

02.11.2017 Chapter 2 126

	Fundamental Algorithms��Chapter 2: Advanced Heaps
	Contents
	Priority Queue
	Priority Queue
	Priority Queue
	Priority Queue
	Priority Queue
	Priority Queue
	Priority Queue
	Priority Queue
	Extended Priority Queue
	Why Priority Queues?
	Why Priority Queues?
	Priority Queue
	Binary Heap
	Binary Heap
	Binary Heap
	Binary Heap
	Binary Heap
	Insert Operation
	Insert Operation - Correctness
	Insert Operation - Correctness
	Insert Operation - Correctness
	Insert Operation - Correctness
	Binary Heap
	Binary Heap
	deleteMin Operation - Correctness
	deleteMin Operation - Correctness
	deleteMin Operation - Correctness
	Binary Heap
	Binary Heap
	Binary Heap
	Extended Priority Queue
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Binomial Heap
	Example of Merge Operation
	Binomial Heap
	Example of Insert Operation
	Example of Insert Operation
	Example of Insert Operation
	Example of Insert Operation
	Binomial Heap
	Example of decreaseKey
	Example of decreaseKey
	Example of decreaseKey
	Example of decreaseKey
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Amortized Analysis
	Amortized Analysis
	Amortized Analysis
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci Heap
	Fibonacci-Heap
	Summary
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Radix Heap
	Summary
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix Heap
	Extended Radix heap
	Summary
	Contents
	Shortest Paths
	Shortest Paths
	Dijkstra´s Algorithm
	Dijkstra´s Algorithm
	Dijkstra´s Algorithm
	Dijkstra´s Algorithm
	Dijkstra´s Algorithm
	Dijkstra´s Algorithm
	Minimal Spanning Tree
	Minimal Spanning Tree
	Prim´s Algorithm
	Prim´s Algorithm
	Next Chapter

