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Contents

A heap implements a priority queue.
We will consider the following heaps:
e Binomial heap
* Fibonacci heap
e Radix heap
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Priority Queue
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Priority Queue

insert(10)
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Priority Queue

min() outputs 3 (minimal element)
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Priority Queue

deleteMin()
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Priority Queue

decreaseKey(12,3)

02.11.2017 Chapter 2



Priority Queue

delete(8)
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Priority Queue

)

merge(Q.Q’)

/\0
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Priority Queue

M: set of elements In priority queue

Every element e identified by key(e).
Operations:

* M.build({e,,...,e.}): M:={e,,...,e.}
 M.insert(e: Element). M:=MuU{e}

* M.min: outputs eeM with minimal key(e)

* M.deleteMin: like M.min, but additionally
M:=M\{e}, for that e with minimal key(e)
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Extended Priority Queue

Additional operations:
* M.delete(e: Element): M:=M\{e}

 M.decreaseKey(e:Element, A):
key(e).=key(e)-A
e M.merge(M"): M:=MUM’

Note: in delete and decreaseKey we have
direct access to the corresponding element
and therefore do not have to search for it.

02.11.2017 Chapter 2 11



Why Priority Queues?

e Sorting: Heapsort
o Shortest paths: Dijkstra’s algorithm
 Minimum spanning trees: Prim’s algorithm

e Job scheduling: EDF (earliest deadline
first)
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Why Priority Queues?

Problem from the ACM International Collegiate Programming
Contest:

A number whose only prime factors are 2,3,5or 7 is called a
humble number. The sequence 1, 2, 3,4, 5,6, 7, 8,9, 10, 12,
14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble
numbers.

e Write a program to find and print the n-th element in this
sequence

Solution: use heap to systematically generate all humble
numbers, starting with heap just containing 1. Repeatedly do:

e X:=M.deleteMin

* M.insert(2x); M.insert(3x); M.insert(5x), M.insert(/x)
(assumption: only inserts element if not already in heap)
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Priority Queue

* Priority Queue based on unsorted list:
— build({e,,...,e,}): time O(n)
— Insert(e): O(1)
— min, deleteMin: O(n)
* Priority Queue based on sorted array:
— build({ey,...,e }): time O(n log n) (needed for sorting)
— Insert(e): O(n) (rearrange elements in array)
— min, deleteMin: O(1)

Better structure needed than list or array!
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Binary Heap

ldee: use binary tree instead of list

Preserve two Invariants:

 Form invariant:complete
binary tree up to lowest

level
 Heap invariant:
key(e,)<min{key(e,),key(e,)} /" N\

(o)
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Binary Heap

Example:

Heap invariant—,

o
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Binary Heap

Representation of binary tree via array:

N
=
w0 () GO G

\
(o) (o)

e, | e, | e |le;| e | e | e | e | €g
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Binary Heap

Representation of binary tree via array:

e;|le, | e;|le, | e | e | e | e | €

 H: Array [1..N] of Element (N > #elements n)
e Children of e in H[i]: in H[2i], H[2i+1]

 Form invariant: H[1],...,H[n] occupied
 Heap invariant: for all ie{2,...,n},

key(H[i])=key(H[[1/2]])

02.11.2017 Chapter 2

18



Binary Heap

Representation of binary tree via array:

7| € 0

€ | € | € s | € | €

Insert(e):
 Form invariant: n:=n+1; H[n]:=e
 Heap invariant: as long as e Is In H[k] with

«>1 and key(e)<key(H[|k/2|]), switch e
with parent
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Insert Operation

Insert(e: Element):
n:=n+1; H[n]:=e
heapifyUp(n)

heapifyUp(l: Integer):
while i>1 and key(H/i])<key(H[|i/2]]) do
H[i] < H[|i/2]]
1.=|1/2]

Runtime: O(log n)
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Insert Operation - Correctness

@ /®\
@ e

@/é @/: o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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Insert Operation - Correctness

/@ /@\

@/ @/@ qc @/@

e

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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Insert Operation - Correctness

/@ /@\

@ 23

\
o6

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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Insert Operation - Correctness

© @
/ \

=
S @&2

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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Binary Heap

deleteMin:
 Form invariant: H[1]:=H[n]; n:=n-1
 Heap invariant: start with e in H[1].

Switch e with the child with minimum key
until H[k]<min{H|[2k],H[2k+1]} for the

current position k of e or e is in a leaf
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Binary Heap

deleteMin(): Runtime: O(log n)
e:=H[1]; H[1]:=H[n]; n:=n-1
heapifyDown(1)
return e

heapifyDown(i: Integer):

while 2i<n do //11s not a leaf position
If 2i+1>n then m:=21 // m: pos. of the minimum child
else

If key(H[2i])<key(H[2I+1]) then m:=2i
else m:=2i+1
If key(H[i])<key(H[m]) then return // heap inv. holds
H[i] <> H[m]; I:I=m
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deleteMin Operation - Correctness

(3)
aom oAl wm
(10) (o) (12) (3s) (10) (o) (12) (15)

i o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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deleteMin Operation - Correctness

(s)
aowm o~ w W
(10) (o) (12) (3s) (10) (o) (12) (15)

o o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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deleteMin Operation - Correctness

© ©

7N\ 7N

o
ORGIGROI I RRCRG

o o

Invariant: H[k] is minimal w.r.t. subtree of H[k]

() : nodes that may violate invariant
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Binary Heap

puild{e,.,....e }):

* Naive implementation: via n insert(e)
operations. Runtime O(n log n)

e Better implementation:

puild({e,,...,e.}):

for 1:=|n/2| downto 1 do
heapifyDown(li)

 Runtime (with k=[log n]): |
O(zlskk 2|(k'|)) = O(Zk ijl j/ZJ) - O(n)
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Binary Heap

Call HeapifyDown(i) for i=|n/2| down to 1:

AA

Invariant: V|>i: H[j| min w.r.t. subtree of Hj]
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Binary Heap

Runtime:

* build({e,,...,e,}): O(n)
 Insert(e): O(log n)

e min: O(1)

e deleteMin: O(log n)
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Extended Priority Queue

Additional Operations:

M.delete(e: Element): M:=M\{e}

M.decreaseKey(e:Element, A): key(e).=key(e)-A
M.merge(M"): M:=MUM’

delete and decreaseKey can be implemented
with runtime O(log n) In binary heap (if position
of e Is known)

merge Is expensive (O(n) time)!
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Binomial Heap

Binomial heap Is based on binomial trees
Binomial tree has to satisfy:
e Form invariant (r: rank):

r=0 r=1 r—r+l

DO

 Heap invariant (key(Parent)<key(Ch|Idren))
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Binomial Heap

Examples of correct Binomial trees:

r=3

&S
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Binomial Heap

Properties of Binomial trees:

r=0 r=1 r—r+l
) i ﬁ/
* 72" nodes number of neighbors

 maximum degree r (at root)

e root deleted: Binomial tree decomposes
Into Binomial trees of rank O to r-1
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Binomial Heap

Example for decomposition into Binomial
trees of rank O to r-1
@ rank 3

0

ranks 2
(1) (&)
2f W (&
24)
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Binomial Heap

Binomial Heap:
 linked list of Binomial trees, ordered by ranks

e for each rank at most 1 Binomial tree
e pointer to root with minimal key

TN

numbers: ranks
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Binomial Heap

Data type:

parent: binTree
prev: binTree
next: binTree
key: Integer
rank: Integer
Children: binTree

oA A /\
numbers: ranks
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Binomial Heap

Example of a correct Binomial heap:

min-pointer
oL@

L

/

Binomial tree of
rank r=1
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Binomial Heap

Example of a correct Binomial heap:

parent: L parent: L parent: L
L prev next «— prev next '« » prev next «—
key: 9 rank: O key: 3 rank: 1 key: 4 rank: 3
children: L children: children:
) // !
v I
parent: parent: parent:
—>| prev next < > prev next <«— prev next «—
key:15 rank: O key:10 rank: O key: 6 rank: 1
children: L children: L children:

1
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Binomial Heap

Merge of Binomial heaps H, and H.;:

A : like binary addition
o & k
> 7
ranks 10100100

& A A M + 101100
A

A 11010000
02.11.2017 : 42




Example of Merge Operation

s "
.
— numbers denote

E n the ranks
M& sur tthe heap H,

Invariant 4 served
by the merging!
A

é A outcome

02.11.2017 Chapter 2 43



Binomial Heap

Runtime of merge operation: O(log n) because

* the largest rank in a Binomial heap with n elements at most
log n (See analogy with binary numbers), and

e at most one Binomial tree iIs allowed for each rank value

B,;: Binomial tree of rank i

 Insert(e): merge existing heap with B, containing only element
e

* min: use min-pointer, time O(1)

» deleteMin: let the min-pointer point to the root of B,.

Deleting the root in B, results in Binomial trees B,...,B, ;
These have to be merged back into Binomial heap.

Thus, the insert and deleteMin operations can be reduced to the
merge operation, which implies a runtime of O(log n).
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Example of Insert Operation

Insert(8):

02.11.2017 Chapter 2
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Example of Insert Operation

Insert(8):
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Example of Insert Operation

Insert(8):
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Example of Insert Operation

Outcome of Insert(8):
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Binomial Heap

 decreaseKey(e,A): perform heapifyUp
operation in Binomial tree starting with e,
update min-pointer. Time O(log n)

. delete(e) (min-pointer does not point to e)

set key(e):= -0 and perform heapifyUp
operation starting with e until e Is In a root;
then continue like in deleteMin when
removing e (but without updating the min-
pointer!).

Time O(log n)
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Example of decreaseKey

decreaseKey(24,19):
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Example of decreaseKey

decreaseKey(24,19):
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Example of decreaseKey

decreaseKey(24,19):
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Example of decreaseKey

Outcome of decreaseKey(24,19):

02.11.2017 Chapter 2



Fibonacci Heap

 Based on Binomial trees, but it allows lazy
merge and lazy delete.

* Lazy merge: no merging of Binomial trees
of the same rank during merge, only
concatenation of the two lists

e Lazy delete: creates incomplete Binomial
trees
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Fibonacci Heap

Tree in a Binomial heap:

(4)
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Fibonacci Heap

Tree in a Fibonacci heap:

Every parent only
knows first and last

child of list Every child

knows Its
parent

List of siblings
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Fibonacci Heap

Tree in a Fibonacci heap:

(4)

Data type fibTree: /
({6 —(10;

parent: fibTree
prev: fibTree
next: fibTree @ @ e

key: Integer
rank: Integer

mark: {0,1}
Children: fibTree @

02.11.2017 Chapter 2
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Fibonacci Heap

Lazy merge of

min

AA//?\ : égg

results In }nin
AR EA
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Fibonacci Heap

Lazy delete:

02.11.2017 Chapter 2
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Fibonacci Heap

Lazy delete:

11 @
G@
Problem: tree should not O

lose too many nodes that way
— IS checked with variable mark

20
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Fibonacci Heap

For any node v in the Fibonacci heap: parent: fibTree
 parent(v) points to the parent of v prev: fibTree

(lf V IS a root, then parent(V):J_) next: fibTree
 prev(v) and next(v) connect v to its key: Integer

preceding and succeeding siblings rank: Integer
 key(v) stores the key of v mark: {0,1}

- : Children: fibTree

« rank(v) is equal to the number of children

of v

« mark(v) stores how many children v has lost due to a lazy
de{ette O()unless v IS a root node, where mark(x) will always be
set to

e Children(v) points to the first child in the childlist of v (this is
sufficient for the data structure, but for the formal presentation
of the Fibonacci heap we assume that v knows the first and
last child in its childlist)
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Fibonacci Heap

Fibonacci heap Is a list of Fibonacci trees
Fibonacci tree has to satisfy:

 Form Invariant:
Every node of rank r has exactly r children.

 Heap invariant:
For every node v, key(v)<key(children of v).

The min-pointer points to the minimal key
among all keys in the Fibonacci heap.
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Fibonacci Heap

Operations:

merge: concatenate root lists, update min-
ointer.
ime O(1)
Insert(x): add x as B, (with mark(f):O) to root
list, update mln-pom%er. Time O(1)
mi_n(z_: output element that the min-pointer Is
pointing to. Time O(1)

deleteMin(), delete(x), decreaseKey(x,A): to be
determined...
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Fibonacci Heap

deleteMin(): This operation will clean up the Fibonacci
heap. Let the min-pointer point to x.

Algorithm deleteMin():
e remove x from root list

 for every child c in child list of x, set parent(c):=_L
and mark(c):=0 // mark not needed for root nodes

 Integrate child list of x into root list

* while =2 trees of the same rank i do
merge trees to a tree of rank i+1
(like with two Binomial trees)

e update min-pointer
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Fibonacci Heap

Merging of two trees of rank |
(1.e., root has i children):

I+1 children, thus rank i+1
i i ™~ Root with
smaller key
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Fibonacci Heap

Efficient searching for roots of the same rank:

« Before executing the while-loop, scan all roots and store
them according to their rank in an array:

Rank: | 0

314/ 5|,6|7)|8
 Merge like for Binomial trees starting with rank O until the
maximum rank has been reached (like binary addition)

2

:

02.11.2017 Chapter 2 66



Fibonacci Heap

Algorithm delete(x):
If X IS min-root then deleteMin()
else
y.=parent(X)
delete x
for every child c in child list of x, set parent(c):=_L and
mark(c):=0
add child list to root list
while y-=NULL do  // parent node of x exists
rank(y):=rank(y)-1 // one more child gone
If parent(y)=_ then return // y is root node: done
If mark(y)=0 then { mark(y):=1; return }
else // mark(y)=1, so one child already gone
X:=y; y.=parent(x)
move x with its subtree into the root list
parent(x):=_L; mark(x):=0 // roots do not need mark

02.11.2017 Chapter 2
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Fibonacci Heap

Example for delete operations: (@ : mark=1)
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Fibonacci Heap

Algorllt:)h(rrs decreaseKey(x,A):
X
%llmve X With its subtree into root list
E arent( x& NULL mark(x):=
ey(x):=key(x)-A
update mln ointer _
Whl|e yqtNU Ldo // arent node of x exists

rank(y): —rankbh i one more child gone

If parent en return // y IS root node: done
If mar z =0 then mark(y 1, return}
else mark y) , SO one child already gone

P( x
moveyx W|th Its subtree into the root list
parentgx) =NULL
mark(x):=0 // roots do not need mark
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Fibonacci Heap

Runtime:

e deleteMin(), delete(x):
O(max. rank + #tree mergings)

« decreaseKey(x,A):
O(1 + #cascading cuts)
l.e., #relocated marked nodes

We will see: runtime of deleteMin can reach ®(n),
but on average over a sequence of operations
much better (even in the worst case).
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Amortized Analysis

Consider a sequence of n operations on an
initially empty Fibonacci heap.

e Sum of individual worst case costs too high!
e Average-case analysis does not mean much

e Beftter: amortized analysis, i.e., average cost of
operations in the worst case (i.e., a sequence of
operations with overall maximum runtime)

02.11.2017 Chapter 2 71



Amortized Analysis

Recall:

Theorem 1.5: Let S be the state space of a
data structure, s, be its initial state, and let
0:S—R., be a non-negative functlon Given
an operation X and a state s with s *> s, we
define

Ax(S) = Tx(S) + (9(S') - #(8))

Then the functions A, (s) are a family of
amortized time bounds.
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Amortized Analysis

~or Fibonacci heaps we will use the
potential function
bal(s):= #trees + 2-#marked nodes In

in state s /

node v marked: mark(v)=1
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Fibonacci Heap

Lemma 2.1: Let x be a node in the Fibonacci heap
with rank(x)=k. Let the children of x be sorted in
the order in which they were added below x.
Then the rank of the I-th child is =1-2.

Proof:

 When the i-th child is added, rank(x)=i-1.

* Due to the tree merging rule, the i-th child must
have also had rank i-1 at this time.

o Afterwards, the i-th child loses at most one of its
children, I1.e., Its rank I1s >1I-2.
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Fibonacci Heap

Theorem 2.2: Let x be a node in the Fibonacci
heap with rank(x)=k. Then the subtree with root
x contains at least ., elements, where F, is the
k-th Fibonacci number.

Definition of Fibonacci numbers:
c Fp=0andF, =1

 F,=F ,+F , forall k>1
Hence, F ., =1+ > _“F,.
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Fibonacci Heap

Proof of Theorem 2.2:

e Letf, be the minimal number of elements
In a tree of rank k.

e From Lemma 2.2 we get: ~

f, = f +f -+, .+, +1+1
k = Tk2T k-3 0 e

1. child

* Moreover, f,=1 and f,=2

e |t follows from the Fibonaccl numbers:
1:k = |:k+2

02.11.2017 Chapter 2
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Fibonacci Heap

e Itis known that F,, > ®**2 with

d=(1+V5)/2 = 1,618034

e Hence, a tree of rank k in the Fibonacci
heap contains at least 1,612 nodes.

* Therefore, a Fibonacci heap with n
elements contains trees of rank at most
O(log n) (like in a Binomial heap)
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Fibonacci Heap

* {: time for operation |

» bal: value of bal(s) after operation i
(bal(s) = #trees + 2-#marked nodes)

* a;: amortized runtime of operation |

Amortized runtime of operations:

e Insert: t=0O(1) and Abal=+1, so a=0(1)
 merge: (=0(1) and Abal=0, so a=0(1)
 min: t=0(1) and Abal=0, so a=0(1)
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Fibonacci Heap

Theorem 2.3: The amortized runtime of deleteMin() is
O(log n).
Proof:

 Insertion of child list of x into root list:
Abal <rank(x) — 1
since #trees Increases by rank(x)-1 and some marks
might be set from 1 to O

 Every merging reduces #trees by 1:
Abal = - #mergings

 Because of Theorem 2.2 ﬁrank at most O(log n)) we get:
#mergings = #trees — O(log n)

» Altogether: Abal, = rank(x) - #trees + O(log n)

* Real runtime (in appropriate time units):

[ = #trees + O(rank(x)) = #trees + O(log n)
 Amortized runtime:;

a; = t; + Abal, = O(log n)
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Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) Is
O(log n).
Proof: (x is not the min-element — otherwise like Th. 2.3)

e [nsertion of child list of x into root list:
Abal < rank(x)

 Every cascading cut (i.e., relocation of a marked node)
Increases the number of trees by 1.:
Abal = #cascading cuts

« Every cascading cut removes one marked node:
Abal = -2-#cascading cuts

e The last cut possibly introduces a new marked node:
Abal € {0,2}
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Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) Is

O(log n).
Proof:
« Altogether:

Abal; < rank(x) - #cascading cuts + O(1)
= O(log n) - #cascading cuts

because of Theorem 2.2

e Real runtime (in appropriate time units):
[, = O(log n) + #cascading cuts

e Amortized runtime;:
a; =t + Abal, = O(log n)
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Fibonacci-Heap

Theorem 2.5: The amortized runtime of decreaseKey(x,A)
IS O(1).
Proof:

e Every cascading cut increases the number of trees by 1.
Abal = #cascading cuts

« Every cascading cut removes a marked node:
Abal < -2-#cascading cuts

 The last cut possibly creates a new marked node:
Abal € {0,2}

« Altogether: Abal; = - #cascading cuts + O(1)
e Real runtime: [; = #cascading cuts + O(1)
 Amortized runtime: a, =t + Abal, = O(1)
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Summary

Runtime Binomial Heap |Fibonacci Heap
Insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.
delete O(log n) O(log n) amor.
merge O(log n) O(1)
decreaseKey |O(log n) O(1) amor.

02.11.2017
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Radix Heap

Assumptions:

1. All keys are integer values and have a
distance of at most C from each other

2. Insert(e) only inserts elements e with
key(e)=K. ., (K,,: minimum key)

Second assumption: we are searching for a
monotonic priority queue
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Radix Heap

Let B[-1..K] be array of lists B[-1] to B[K], where
K=1+|log C].

°e

Invariant: Every e stored in B[min(msd(k,,,,key(e)),K)]

* msd(k,,,key(e)): maximum bit position at which
binary representations of k., and key(e) differ

(-1: no difference)
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Radix Heap

Example for msd(k,..k):

e letk. =17, orin binary form, 10001

o k=17: msd(K;,,K)=-1

* k=18:1In binary 10010, so msd(k,,,k)=1
e k=21:1In binary 10101, so msd(k,,,k)=2
e k=52:1In binary 110100, so msd(k,,,,K)=5

Computation of msd for a=Db:
msd(a,b)=|log(a®b)|
where © denotes bit-wise xor.

Time: O(1) (with appropriate machine instruction set)
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Radix Heap

min():
e output k., In B[-1]
Runtime: O(1)
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Radix Heap

insert(e): ( key(e)=k., )

e :=min{msd(k,...key(e)), K}
e store e in BJl]

Runtime: O(1)

delete(e): (key(e)>k,,,, otherwise call deleteMin() )
« Remove e from its list BJj]
Runtime: O(1)

decreaseKey(x,A): ( key(e) - A = k., , A>0)
« call delete(e) and insert(e) with key(e):=key(e) - A
Runtime: O(1)
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Radix Heap

deleteMin():

« If B[-1] Is occupied, remove some e from B[-1]
(otherwise the heap is empty and we are done)

 find minimal i so that B[i|= < (if there is no such i or i=-1
then we are done)

e determine k., in BJi]

 distribute nodes in B[i] among BI[-1],...,B[i-1] w.r.t. the
new K.,

Important: for all e in BJj], =i, it still holds that
msd(k...key(e))=], I.e., they do not have to be moved.
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Radix Heap

1101, 2345|6738
I L I
2 4119 260
L I
511 381
L
6 | |14

We consider a sequence of deleteMin operations
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Radix Heap

9 11| |14 260

381

We consider a sequence of deleteMin operations
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Radix Heap

Lemma 2.6: Let B[] be the minimal non-
empty list, i=0. Let x,,, be the minimal key
in B[i]. Then msd(x,,,,x)<I for all keys x In

Bli]. all elements in B[i] move to the left I

Proof:
* X=X.. obviously true (x placed in B[-1])

* X#+X.,i,- We distinguish between two cases:

1) <K, 2) =K

02.11.2017 Chapter 2 92



Radix Heap

Case I<K:
bit position: |
old k.., a 0 [
)Xmm>kmm
Xmin a 1 <
) X, X 0 BII]
X a 1 /

Thus, msd(x,,,x)<I.
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Radix Heap

Fall I=K:
bit position: j>K h 0
)Xmm>kmm
Xmm a 1‘/ b 0 N\
)X>Xmm
X a 1 b 1 /

e Itholds: k., < x,, <x<k.,,+C and 2">C, so x
and x.,,, must have identical prefix al.
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Radix Heap

Case I=K:
bit position: j>K h 0
)Xmm>kmm
Xmm a 1‘/ b 0 N\
)X>Xmm
X a 1 b 1 /

o Leth=msd(x,,,X). Since 2“>C, h must be less
than K.
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Radix Heap

°g

Consequence:

* Every element can only be moved at most K
times in the Radix heap (due to deleteMin or
decreaseKey operations)

 Insert(): amortized runtime O(log C).
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Summary

Runtime Fibonacci Heap |Radix Heap
Insert O(1) O(log C) amor.
min O(1) O(1)
deleteMin O(log n) amor. |O(1) amor.
delete O(log n) amor. |O(1)

merge O(1) 27?7
decreaseKey [O(1) O(1)
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Extended Radix Heap

Assumptions:

1. All keys are integer values and have a
distance of at most C from each other

2. Inserf(e)enrhInserts e 'S E WIth
ke =k (K minimomkey)

min min*

Second assumption: monotone priority
gueue
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Extended Radix Heap

0 2 K
At least one é
normal

element

super elements at the end

(O : “super element” e, which contains a Radix heap with

K.i.=key(e) where k., IS the smallest value in the
Radix heap of e and B_[-1] has =1 normal element.

Note: super elements may contain super elements
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Extended Radix Heap

Example:

@

;élZB....K @

G~
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Extended Radix Heap

Merge of two extended Radix heaps B
and B’ with k.. (B) < k.,i,(B):
(Case k.,..(B) > k...(B) : flip Band B)
e transform B’ into a super element e with
key(e) - kmin(B,)
e call insert(e) on B
Runtime: O(1)
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Extended Radix Heap

Example of a merge operation:

: e

-1,011(2 ]3| ... K

I I
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Extended Radix Heap

Insert(e):
» key(e)=k.,,: as In standard Radix heap

o otherwise, merge extended Radix heap
with a new Radix heap just containing e

Runtime: O(1)

min(): like in a standard Radix heap
Runtime: O(1)
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Extended Radix Heap

deleteMin():

« Remove normal element e from B[-1]
(B: Radix heap at highest level)

 If B[-1] does not contain any elements, then
update B like in a standard Radix heap (l.e.,
dissolve smallest non-empty bucket BJi])

ot contain normal elements any

more, then takethe first super element e’ from
Bl-1] and merge the\ists of e’ with B

(then there IS again a notmal element in B[-1]!)

Runtime: O(log C) + time for updates
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Extended Radix Heap

deleteMINQ): 1o 15 Ta T Tx
% @ @
(@
11213 K éo L :

1|0
merge Radix heap of @
into top Radix heap

-1
02.11.2017
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Extended Radix Heap

deleteMin():

560 b

G~
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Extended Radix Heap

delete(e):
Case 1: key(e)>k,, for heap of e:
 like delete(e) in a standard Radix heap
Case 2: key(e)=k., for heap of e:
» like deleteMin() above but on heap of e
e if e was in Radix heap of super element e’:
— If €’ Is afterwards empty, then remove €’ from heap B’
containing €’
— If the minimum key in e’ has changed, then move e’ to its
correct bin in B’

Since there is a normal element in B’[-1], both cases have no
cascading effects!

Runtime: O(log C) + time for updates
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Extended Radix Heap

delete(10):

23] .... K

55@5
(4)

-1 0

;élZB....K £

merge Radix heap of @
into top Radix heap

z%{
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Extended Radix Heap

- 1
-1 0 ;
merge Radix heap of @
into top Radix heap

delete(10):

=
o

o -
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Extended Radix Heap

;élZBWK @

merge Radix heap of @

delete(10):

into top Radix heap 1101112131 ....K
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Extended Radix heap

decreaseKey(e,A):

o call delete(e) in heap of e

« setkey(eT: (e)-A

« call insert(e) on highest Radix heap

Runtime: O(log C) + time for updates

Amortized analysis: similar to Radix heap

e eachtime a normal element e is inserted, the potential is increased
by K+pos(e) (to compensate for pos(e) left moves of itself and a
right move of its superelement e if it is removed as the minimum
element in the Radix heap of e)

e eachtime a superelement e Is inserted, the potential is increased by
K+pos(e) (to compensate for pos(e) left moves and the merging of
up to K lists in its Radix heap if it is removed from B[-1] in deleteMin)
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Summary

Runtime Radix heap ext. Radix heap
Insert O(log C) amor. |O(log C) amor.
min O(1) O(1)

deleteMin O(1) amor. O(1) amor.
delete O(1) O(1) amor.
merge 27?7 O(log C) amor.
decreaseKey |O(1) O(log C) amor.
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Contents

 Binomial heap
* Fibonacci heap
e Radix heap
* Applications
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Shortest Paths

#mﬂhﬂ

. -

- p

R
‘ b -

RS

. -

Central question: Determine fastest way to get from s to t.
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Shortest Paths

Cost of p:
c(p)=-1+(-2)+5=2

L(s,v): distance fromsto v

o no path fromstov

u(s,v) = < -o  path of arbitrarily low cost fromstov /

_ min{ c(p) | p Is a path from s to v}
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Dijkstra’s Algorithm

Consider the single source shortest path problem
(SSSP), I.e., find the shortest path from a source
s to all other nodes, in a graph with arbitrary
non-negative edge costs.

W

Basic idea behind Dijkstra’s Algorithm:
visit nodes In the order of their distance from s
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Dijkstra’s Algorithm

 |nitially, set d(s):=0 and d(v):=« for all other
nodes. Use a priority queue g in which the
priorities represent the current distances d(v)
from s. Add s to q.

e Repeat until g is empty:
Remove node v with lowest d(v) from g (via
deleteMin). For all (v,w)eE, set
d(w) = min{d(w), d(v)+c(v,w)}. If w has not been
In g so far, insert w into d. In order to repair g In
case of a change of d(w), perform a
decreaseKey operation.
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Dijkstra’s Algorithm

Example: (@ : current, @ : done)

1
2 '@ 1
2 \
1

4
N
~(8)-
i 3 5 . A’
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Dijkstra’s Algorithm

Procedure Dijkstra(s: Nodeld)
d=<o0,..., o> NodeArray of RU{-o0,x}
parent=<41,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u:=q.deleteMin() // u: node with min distance
foreach e=(u,v)cE do
If d[v] > d[u]+c(e) then // update d[v]
If d[v]=co then qg.insert(v) // vin g?
parent[v]:=u
/[ d[v] set to d[u]+c(e)
g.decreaseKey(v, d[v]-(d[u]+c(e)))
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Dijkstra’s Algorithm

* To,(n): runtime of operation Op on data structure
with n elements

Runtime:
Tpijkstra = O(N(Tpeletemin(M+ Tingert(N)) + M-Tecreaserey(N))
Binary heap: all operations have runtime O(log n), so
Thikstra = O((M+n)log n)
Fibonacci heap: amortized runtimes
‘ TDeIeteMin(n):Tlnsert(n):O(IOg n)

° TdecreaseKey(n):O(l)
 Therefore, Tpjqq = O(nlog n +m)
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Dijkstra’s Algorithm

Remark: Dijkstra’s Algorithm does not need a
general priority queue but only a monotonic
priority queue (i.e., minima are monotonically

Increasing)

If all edge costs are integer values in [0,C], use a
Radix heap. Its amortized runtimes are

° _DeleteMin(n):TdecreaseKey(n):O(l)

° “Insert(n):O(IOg C)

« Thus in this case, Ty, = O(n log C + m)
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Minimal Spanning Tree

Problem: Which edges do | need to take In
order to connect all nodes at the lowest
possible cost?
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Minimal Spanning Tree

Input:
e Undirected graph G=(V,E)
 Edge costs c.E—> R,

Output:

e Subset T<E so that the graph (V,T) is connected
and c(T)=2._ c(e) is minimal

« T always forms a tree (if c Is positive).

e Tree over all nodes in V with minimum cost:
minimal spanning tree (MST)
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Prim’s Algorithm

Procedure Prim(s: Nodeld)
d=<o0,..., o> NodeArray of RU{-o0,x}
parent=<4,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u:=q.deleteMin() // u: node with min distance
foreach e=(u,v)€E do
If d[v] > c(e) then // update d|v]
d[v]=co then g.insert(v) // vin g7
parent[v] =u
/[ d[v] set to c(e)
g.decreaseKey(v, d[v]-c(e))
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Prim’s Algorithm

* To,(n): runtime of operation Op on data structure
with n elements

Runtime:
Trim = O(N(Tpeietemin(M* Tinsert(N)) + M-Tyecreaserey())

Binary heap: all operations have runtime O(log n), so
TPrim - O((m+n)|og n)

Fibonaccl heap: amortized runtimes

° TDeIeteMin(n):Tlnsert(n):O(IOg n)

° TdecreaseKey(n):O(l)
e Therefore, T, = O(n log n + m)
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Next Chapter

Topic: Search structures
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