Fundamental Algorithms

Chapter 3: Advanced Search Structures

Christian Scheideler WS 2017

insert(15)

delete(20)

search(7) gives 8 (closest successor)

S: set of elements

Every element e identified by key(e).

Operations:

- S.insert(e: Element): S:=S∪{e}
- S.delete(k: Key): S:=S\{e}, where e is the element with key(e)=k
- S.search(k: Key): outputs e∈S with minimal key(e) so that key(e)≥k

Static Search Structure

1. Store elements in sorted array.

search: via binary search (in O(log n) time)

Binary Search

Input: number x and sorted array A[1],...,A[n]

```
Algorithm BinarySearch:
l:=1; r:=n
while I < r do
m:=(r+I) div 2
if A[m] = x then return m
if A[m] < x then l:=m+1
else r:=m
```

return

Dynamic Search Structure

insert und delete Operations:

Sorted array difficult to update!

Worst case: ⊕(n) time

2. Sorted List (with an ∞-Element)

Problem: insert, delete and search take ⊕(n) time in the worst case

Observation: If search could be implemented efficiently, then also all other operations

Idee: add navigation structure that allows search to run efficiently

Binary Search Tree (ideal)

Search tree invariant:

For all keys k' in T_1 and k'' in T_2 : $k' \le k < k''$

Formally: for every tree node v let

- key(v) be the key stored at v
- d(v) the number of children of v
- Search tree invariant: (as above)
- Degree invariant:
 All tree nodes have exactly two children
 (as long as the number of elements in the list is >1)
- Key invariant:
 For every element e in the list there is exactly one tree node v with key(v)=key(e).

- Search tree invariant: (as before)
- Degree invariant:
 All tree nodes have exactly two children
 (as long as the number of elements is >1)
- Key invariant:
 For every element e in the list there is exactly one tree node v with key(v)=key(e).

From the search tree and key invariants it follows that for every left subtree T of a node v, the rightmost list element e under T satisfies key(v)=key(e).

search(x) Operation

For all keys k' in T_1 and k'' in T_2 : $k' \le k < k''$

Search strategy:

- Start at the root, v, of the search tree
- while v is a tree node:
 - if x ≤ key(v) then let v be the left child of v,
 otherwise let v be the right child of v
- Output (list node) v

search(x) Operation

For all keys k' in T_1 and k'' in T_2 : $k' \le k < k''$

Correctness of search strategy:

For every left subtree T of a node
 v, the rightmost list element e under
 T satisfies key(v)=key(e).

 So whenever search(x) enters T, there is an element e in the list below T with key(e)≥x.

Search(9)

Insert and Delete Operations

Strategy:

insert(e):
 First, execute search(key(e)) to obtain a list element e'.

 If key(e)=key(e'), replace e' by e, otherwise insert e

between e' and its predecessor in the list and add a new search tree leaf for e and e' with key key(e).

delete(k):

First, execute search(k) to obtain a list element e. If key(e)=k, then delete e from the list and the parent v of e from the search tree, and set in the tree node w with key(w)=k: key(w):=key(v).

Insert(5)

Insert(5)

Insert(12)

Insert(12)

Delete(1)

Delete(1)

Delete(14)

Delete(14)

27

Problem: binary tree can degenerate!

Example: numbers are inserted in sorted order

Search Trees

Problem: binary tree can degenerate! Solutions:

- Splay tree (very effective heuristic)
- (a,b)-tree
 (guaranteed well balanced)
- hashed Patricia trie (loglog-search time)

Applications

Usually: Implementation as internal search tree (i.e., elements directly integrated into tree and not in an extra list)

Here: Implementation as external search tree (like for the binary search tree above)

Ideas:

- 1. Add shortcut pointers in tree to list elements
- For every search(k) operation, move pred(k) (the closest predecessor of k in T) to the root

Movement: via Splay operation

For simplicity: we just focus on search(k) for keys k in the search tree.

Splay Operation

Movement of key x to the root: We distinguish between three cases.

1a. x is a child of the root:

Splay Operation

Movement of key x to the root: We distinguish between three cases.

1b. x is a child of the root:

Splay Operation

We distinguish between three cases.

2a. x has father and grand father to the right

We distinguish between three cases.

2b. x has father and grand father to the left

37

We distinguish between three cases.

3a. x: father left, grand father right

We distinguish between three cases.

3b. x: father right, grand father left

Examples:

zig-zig, zig-zag, zig-zag, zig

zig-zig, zig-zag, zig-zig, zig

Observation: In the worst case, tree can still be highly imbalanced! But amortized costs are very low.

search(k)-operation:

- Move downwards from the root (as in standard binary tree) till pred(k) found in search tree (which can be checked via shortcut to the list) or the list is reached
- call splay(pred(k)), output succ(k) (k exists in tree: pred(k)=succ(k)=k)

Amortized Analysis:

- Note: runtime of search(k) is O(runtime of splay(pred(k)).
- Our goal: bound runtime of m Splay operations on arbitrary binary search tree with n elements (m>n)

- Weight of node x: w(x)>0
- Tree weight of tree T with root x: $tw(x) = \sum_{v \in T} w(y)$
- Rank of node x: r(x) = log(tw(x))
- Potential of tree T: $\phi(T) = \sum_{x \in T} r(x)$

Lemma 3.1: Let T be a Splay tree with root x and u be a node in T. The amortized cost for splay(u,T) is at most 1+3(r(x)-r(u)).

Proof of Lemma 3.1:

Induction over the sequence of rotations.

- r and tw: rank and weight before the rotation
- r' and tw': rank and weight after the rotation

Case 1:

Amortized cost:

$$\leq 1 + r'(u) + r'(v) - r(u) - r(v) \leq 1 + r'(u) - r(u) \quad \text{since } r'(v) \leq r(v) \\ \leq 1 + 3(r'(u) - r(u)) \quad \text{since } r'(u) \geq r(u) \\ \leq 1 + 3(r'(u) - r(u)) \quad \text{since } r'(u) \geq r(u) \leq r(u)$$

Case 2:

Amortized cost:

```
\leq 2+r'(u)+r'(v)+r'(w)-r(u)-r(v)-r(w)
= 2+r'(v)+r'(w)-r(u)-r(v) since r'(u)=r(w)
\leq 2+r'(u)+r'(w)-2r(u) since r'(u)\geq r'(v) and r(v)\geq r(u)
```


i.e.

$$r(u)+r'(w) \le 2(r'(u)-1)$$

- Recall: there are 0 < x,y < 1 and a scaling factor c > 0 with $r(u) = log(c \cdot x)$, $r'(w) = log(c \cdot y)$, and $r'(u) \ge log(c(x+y))$.
- Hence, the claim holds if log(c·x)+log(c·y) ≤ 2(log(c(x+y))-1) for all 0<x,y<1 and c>0.

• For all 0<x,y<1 and c>0 holds:

$$\log(c \cdot x) + \log(c \cdot y) \le 2(\log(c(x+y)) - 1)$$

$$\Leftrightarrow \log(x) + \log(y) \le 2(\log(x+y) - 1)$$

• W.I.o.g. set c so that c(x+y)=1. Let $x'=c\cdot x$ and $y'=c\cdot y$.

- To show: for all $0 < x', y' \le 1$, with x' + y' = 1: $\log(x') + \log(y') \le 2(\log(1) - 1) = -2$
- Or more generally: show for f(x,y)=log(x)+log(y) that f(x,y)≤-2 for all x,y>0 with x+y≤1

Lemma 3.2: In the area x,y>0 with $x+y\leq 1$, the function $f(x,y)=\log x + \log y$ has its maximum at $(\frac{1}{2},\frac{1}{2})$.

Proof:

- Since log x is monotonically increasing, the maximum can only lie on the line segment with x+y=1, x,y>0.
- Consider determining the maximum for g(x) = log x + log (1-x)
- The only root of g'(x) = 1/x 1/(1-x) is at x=1/2.
- For $g''(x) = -(1/x^2 + 1/(1-x)^2)$ it holds that g''(1/2) < 0.
- Hence, f has its maximum at (½,½).

Hence, it holds that $f(x,y) \le -2$ for all x,y>0 with $x+y\le 1$, which implies the claim that

$$r(u)+r'(w) \le 2(r'(u)-1)$$

Case 3:

Amortized cost:

```
\leq 2+r'(u)+r'(v)+r'(w)-r(u)-r(v)-r(w)

\leq 2+r'(v)+r'(w)-2r(u) since r'(u)=r(w) and r(u)\leq r(v)

\leq 2(r'(u)-r(u)) because...
```

Case 3:

...it holds that:

$$2+r'(v)+r'(w)-2r(u) \le 2(r'(u)-r(u))$$

 $\Leftrightarrow 2r'(u)-r'(v)-r'(w) \ge 2$
 $\Leftrightarrow r'(v)+r'(w) \le 2(r'(u)-1)$, which is true

Proof of Lemma 3.1: (Follow-up)

Induction over the sequence of rotations.

- r and tw: rank and weight before the rotation
- r' und tw': rank and weight after the rotation
- For every rotation, the amortized cost is at most 1+3(r'(u)-r(u)) (case 1) resp. 3(r'(u)-r(u)) (cases 2 and 3)
- Summation of the costs gives at most (x: root) $1 + \sum_{Rot.} 3(r'(u)-r(u)) = 1+3(r(x)-r(u))$

- Tree weight of tree T with root x: $tw(x) = \sum_{y \in T} w(y)$
- Rank of node x: r(x) = log(tw(x))
- Potential of tree T: $\phi(T) = \sum_{x \in T} r(x)$
- Lemma 3.1: Let T be a Splay tree with root x and u be a node in T. The amortized cost for splay(u,T) is at most $1+3(r(x)-r(u)) = 1+3\cdot log(tw(x)/tw(u))$.
- Corollary 3.3: Let $W = \sum_{x} w(x)$ and w_i be the weight of key k_i in the i-th search call. For m search operations, the amortized cost is $O(m + \sum_{i=1}^{m} log (W/w_i))$.

Splay Tree

Theorem 3.4: The runtime for m search operations in a Splay tree T with n elements is at most

$$O(m+(m+n)\log n)$$
.

Proof:

- Let w(x) = 1 for all nodes x in T.
- Then W=n and $r(x) \le \log W = \log n$ for all x in T.
- Recall: for a sequence F of operations, the total runtime satisfies $T(F) \le A(F) + \phi(s_0)$ for any amortized cost function A and any initial state s_0
- $\phi(s_0) = \sum_{x \in T} r_0(x) \le n \log n$
- Hence, Corollary 3.3 implies Theorem 3.4.

Splay Tree

Suppose we have a probability distribution for the search requests.

- p(x): probability of searching for key x
- $H(p) = \sum_{x} p(x) \cdot log(1/p(x))$: entropy of p

Theorem 3.5: The expected runtime for m search operations in a Splay tree T with n elements is at most $O(m\cdot H(p) + n\cdot log n)$.

Proof:

Follows from Theorem 3.4 with $w(x) = n \cdot p(x)$ for all x.

Expected runtime is $\Omega(m \cdot H(p))$ for every static binary search tree! (Optimal static tree: Huffman tree)

Splay Tree – General Case

 Instead of just exact search, the Splay tree T should also support the search for the closest successor.

Splay Tree – General Case

- Instead of just exact search, the Splay tree T should also support the search for the closest successor.
- To obtain a low amortized time bound for that, we associate with a key x in T the search range [x,x₊) (including x but excluding x₊), where x₊ is closest successor of x in T.
- Each search range $[x,x_+]$ is associated with a weight $w([x,x_+])$. Using that, we can revise Corollary 3.3 to:

Corollary 3.3': Let $W=\sum_x w(x)$ and w_i be the weight of the range $[x,x_+)$ containing the i-th search key. For m search operations, the amortized cost is

$$O(m + \sum_{i=1}^{m} \log (W/w_i)).$$

Splay Tree Operations

Let T_1 and T_2 be two Splay trees with key(x) < key(y) for all $x \in T_1$ und $y \in T_2$.

merge (T_1, T_2) :

Take max. element $x < \infty$ in T_1 and splay it up to root

Splay Tree Operations

split(k,T):

Splay Tree Operations

insert(e):

- insert like in binary search tree
- Splay operation to move key(e) to the root

delete(k):

- execute search(k) (moves k to the root)
- remove root and execute merge(T₁,T₂) of the two resulting subtrees (by moving largest key of T₁ to the root)

- k_{_}: closest predecessor ≤k in T
- k₊: closest successor >k in T

Theorem 3.6: The amortized cost of the following operations in the Splay tree are:

- search(k): O(1+log(W/w([k_-,k_+))))
- insert(e): O(1+log(W/w([key(e),key(e)₊))))
- delete(k): $O(1+log(W/w([k,k_{+}))) + log((W-w([k,k_{+})))/w([k_{-},k))))$

Search Trees

Problem: binary tree can degenerate! Solutions:

- Splay tree (very effective heuristic)
- (a,b)-tree
 (guaranteed well balanced)
- hashed Patricia trie (loglog-search time)

Applications

Problem: how to maintain a balanced search tree

Idea:

- All nodes v (except for the root) have degree d(v) with a≤d(v)≤b, where a≥2 and b≥2a-1 (otherwise this cannot be enforced)
- All leaves have the same depth

Formally: for a tree node v let

- d(v) be the number of children of v
- t(v) be the depth of v (root has depth 0)
- Form Invariant: For all leaves v,w: t(v)=t(w)
- Degree Invariant:
 For all inner nodes v except for root: d(v)∈[a,b], for root r: d(r)∈[2,b] (as long as #elements >1)

Lemma 3.10: An (a,b)-tree with n elements has depth at most 1+[log_a (n+1)/2]

Proof:

- The root has degree ≥2 and every other inner node has degree ≥a.
- At depth t there are at least 2a^{t-1} nodes
- $n+1 \ge 2a^{t-1} \Leftrightarrow t \le 1 + \lfloor \log_a (n+1)/2 \rfloor$

(a,b)-Tree-Rule:

Then search operation easy to implement.

Search(9)

Insert(e) Operation

Strategy:

 First search(key(e)) until some e' found in the list. If key(e')>key(e), insert e in front of e', otherwise replace e' by e.

72

Strategy:

 First search(key(e)) until some e' found in the list. If key(e')>key(e), insert e in front of e', otherwise replace e' by e.

73

 Add key(e) and pointer to e in tree node v above e´. If we still have d(v)∈[a,b] afterwards, then we are done.

If d(v)>b, then cut v into two nodes.
 (Example: a=2, b=4)

If after splitting v, d(w)>b, then cut w into two nodes (and so on, until all nodes have degree ≤b or we reached the root)

 If for the root v of T, d(v)>b, then cut v into two nodes and create a new root node.

Insert(8)

Insert(8)

Insert(8)

Insert(6)

Insert(6)

- Form Invariant:
 For all leaves v,w: t(v)=t(w)
 Satisfied by Insert!
- Degree Invariant:
 For all inner nodes v except for the root:
 d(v)∈[a,b], for root r: d(r)∈[2,b]
 - 1) Insert splits nodes of degree b+1 into nodes of degree [(b+1)/2] and [(b+1)/2]. If b≥2a-1, then both values are at least a.
 - 2) If root has reached degree b+1, then a new root of degree 2 is created.

Strategy:

 First search(k) until some element e is reached in the list. If key(e)=k, remove e from the list, otherwise we are done.

88

Strategy:

 First search(k) until some element e is reached in the list. If key(e)=k, remove e from the list, otherwise we are done.

89

 Remove pointer to e and key k from the leaf node v above e. (e rightmost child: perform key exchange like in binary tree!) If afterwards we still have d(v)≥a, we are done.

07.02.2018 Chapter 3 90

 Remove pointer to e and key k from the leaf node v above e. (e rightmost child: perform key exchange like in binary tree!) If afterwards we still have d(v)≥a, we are done.

07.02.2018 Chapter 3 91

 If d(v)<a and the preceding or succeeding sibling of v has degree >a, steal an edge from that sibling. (Example: a=2, b=4)

 If d(v)<a and the preceeding and succeeding siblings of v have degree a, merge v with one of these. (Example: a=3, b=5)

 Peform changes upwards until all inner nodes (except for the root) have degree ≥a. If root has degree <2: remove root.

Delete(10)

Delete(10)

96

Delete(14)

Delete(14)

Delete(14)

Delete(1)

Delete(1)

Delete(19)

$$a=2, b=4$$

Delete(19)

$$a=2, b=4$$

107

Delete(19)

$$a=2, b=4$$

Delete(19)

$$a=2, b=4$$

Delete Operation

- Form Invariant:
 For all leaves v,w: t(v)=t(w)
 Satisfied by Delete!
- Degree Invariant:
 For all inner nodes v except for the root: d(v)∈[a,b], for root r: d(r)∈[2,b]
 - Delete merges node of degree a-1 with node of degree a. Since b≥2a-1, the resulting node has degree at most b.
 - 2) Delete moves edge from a node of degree >a to a node of degree a-1. Also OK.
 - 3) Root deleted: children have been merged, degree of the remaining child is $\geq a$ (and also $\leq b$), so also OK.

More Operations

min/max Operation:
 Pointers to both ends of list: time O(1).

Range queries:

To obtain all elements in the range [x,y], perform search(x) and go through the list till an element >y is found.

Time O(log n + size of output).

n Update Operations

Theorem 3.11: There is a sequence of n insert and delete operations in a (2,3)-tree that require $\Omega(n \log n)$ many split and merge Operations.

Proof: Exercise

n Update Operations

Theorem 3.12: Consider an (a,b)-tree with b≥2a that is initially empty. For any sequence of n insert and delete operations, only O(n) split and merge operations are needed.

Proof:

Amortized analysis

External (a,b)-Tree

(a,b)-trees well suited for large amounts of data

External (a,b)-Tree

Problem: minimize number of block transfers between internal and external memory

Solution:

- use b=B (block size) and a=b/2
- keep highest (1/2)·log_a(M/b) levels of (a,b)-tree in internal memory (storage needed ≤ M)
- Lemma 3.10: depth of (a,b)-tree ≤1+[log_a (n+1)/2]
- $\log_a[(n+1)/2] (1/2) \cdot \log_a(M/b) \le \log_a[(n+1)/(2 \sqrt{M})] + \log_a b$
- $log_ab = O(1)$
- Cost for insert, delete and search operations:
 O(log_B(n/ \M)) block transfers

External (a,b)-Tree

Problem: minimize number of block transfers between internal and external memory

A better analysis can show (exercise):

Cost for insert, delete and search operations:
 ~2log_{B/2}(n/M)+1 block transfers (+1: list access)

Example:

- n = 100,000,000,000,000 keys
- M = 16 Gbyte (~4,000,000,000 keys)
- $B = 256 \text{ Kbyte } (\sim 64,000 \text{ keys})$
- $2\log_{B/2}(n/M)+1\leq 3$

Search Trees

Problem: binary tree can degenerate! Solutions:

- Splay tree (very effective heuristic)
- (a,b)-tree
 (guaranteed well balanced)
- hashed Patricia trie (loglog-search time)

Applications

Longest Prefix Search

- All keys are encoded as binary sequence {0,1}^W
- Prefix of a key x∈{0,1}^W: arbitrary subsequence of x that starts with the first bit of x (example: 101 is a prefix of 10110100)

Problem: given a key $x \in \{0,1\}^W$, find a key $y \in S$ with longest common prefix

Solution: Trie Hashing

A trie is a search tree over some alphabet Σ that has the following properties:

- Every edge is associated with a symbol c∈Σ
- Every key $x \in \Sigma^k$ that has been inserted into the trie can be reached from the root of the trie by following the unique path of length k whose edge labels result in x.

For simplicity: all keys from $\{0,1\}^W$ for some $W \in \mathbb{N}$.

Example:

(0,2,3,5,6) with W=3 results in (000,010,011,101,110)

Example: (without list at bottom)

search(4) (4 corresponds to 100):

Output: 5 (longest common prefix)

07.02.2018 Chapter 3 121

In general: a search(x) request follows the edges in the trie as long as their labels form a prefix of x. Once no edge is available any more to follow the bits in x, the request may be forwarded to any leaf y in the subtrie below since all of them have the same longest prefix match with x.

insert(1) (1 corresponds to 001):

In general: an insert(x) request follows the edges in the trie as long as their labels form a prefix of x. Once no edge is available any more to follow the bits in x, a new path (of length the remaining bits in x) is created that leads to the new leaf x.

delete(5):

In general: a delete(x) request follows the edges in the trie down to the leaf x. If x does not exist, the delete operation terminates. Otherwise, x as well as the chain of nodes upwards till the first node with at least two children is deleted.

Problem:

- Longest common prefix search for some x∈{0,1}^W can take ⊕(W) time.
- Insert and delete may require ⊕(W) structural changes in the trie.

Improvement: use Patricia trie

A Patricia trie is a compressed trie in which all chains (i.e., maximal sequences of nodes of degree 1) are merged into a single edge whose label is equal to the concatenation of the labels of the merged trie edges.

Example 1:

Example 1:

Example 2:

Example 2:

search(4):

In general: a search(x) request follows the edges in the Patricia trie as long as their labels form a prefix of x. Once no edge is available any more to follow the bits in x, the request may be forwarded to any leaf y in the subtrie below since all of them have the same longest prefix match with x.

insert(1):

Insert(5):

In general: an insert(x) request follows the edges in the Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not follow the bits in x, a new tree node is created in the middle of e.

In general: an insert(x) request follows the edges in the Patricia trie as long as their labels form a prefix of x. Once an edge e is reached whose label l(e) does not follow the bits in x, a new tree node is created in the middle of e.

Example: I(e)=10010, x=...10110100

In general: an insert(x) request follows the edges in the Patricia trie as long as their labels form a prefix of x. Once an edge e is reached whose label l(e) does not follow the bits in x, a new tree node is created in the middle of e.

Special case:

delete(5):

delete(6):

In general: a delete(x) request follows the edges in the Patricia trie down to the leaf x. If x does not exist, the delete operation terminates. Otherwise, x as well as its parent are deleted.

Example: I(e')=10, I(e'')=010, I(e''')=110100, x=...10110100

- Search, insert, and delete like in an ordinary binary tree, with the difference that we have labels at the edges.
- Search time still O(W) in the worst case, but just O(1) structural changes.

Idea: To improve search time, we hash the Patricia trie to some hash table (using, for example, cuckoo hashing).

Hashing to some hash table:

- Node label: concatenation of edge labels from root
- Every node is hashed according to its node label.

 Then every Patricia node can directly be accessed via a HTlookup if its label is known.

Hashing to some hash table:

- Node label: concatenation of edge labels from root
- Every node is hashed according to its node label.

Problem: HT-lookups would, in principle, allow binary search on node labels (time O(W) → O(log W)) but not yet feasible.

Patricia Trie

Hashing to some hash table:

- Node label: concatenation of edge labels from root
- Every node is hashed according to its node label.

Solution: add extra support nodes (msd-nodes).

Solution: add msd-node () for each edge.

- |x|: length of a bit sequence x.
- b(v): label of node v.
- msd(f,f') for two bit sequences 0*of and 0*of': largest bit position (starting with position 0 from right) in which 0*of and 0*of' differ (0*=0000...).
- Consider a bit sequence b with $(x_k,...,x_0)$ being the binary representation of |b|. Let b' be a prefix of b. The msd-sequence m(b',b) of b' and b is the prefix of b of length $|(|b|,j)=\sum_{i=j}^k x_i 2^i$ with j=msd(|b|,|b'|).

Example: Consider b=01101001010 and b'=011010. Then |b|=11, or in binary, 1011, and |b'|=6, or in binary, 110, i.e., msd(|b|,|b'|)=3. Hence, m(b',b)=01101001.

Example: Consider b=01101001010 and b'=011010. Then |b|=11, or in binary, 1011, and |b'|=6, or in binary, 110, i.e., msd(|b|,|b'|)=3. Hence, m(b',b)=01101001.

Other example:

Approach: We replace every edge e={v,w} in the Patricia trie by two edges {v,u} and {u,w} with b(u)=m(b(v),b(w)) and hash the corresponding Patricia trie to the given hash table.

Motivation for inserting msd-nodes: msd-node placed at the position where binary search on the label length will look for the first time for a label of length between |b(v)| and |b(w)|.

Data structure for longest prefix search:

Every hash entry of a tree node v stores:

- 1. Label b(v) of v (always ε for the root!)
- 2. Key key(v) of an element e below the subtree of v, if v is an original Patricia trie node
- 3. Labels $p_x(v)$ of edges to children, $x \in \{0,1\}$
- 4. Label $p_{\cdot}(v)$ of edge to parent (root: $p_{\cdot}(v)$ =prefix to root)

Every hash entry of a list element e stores:

- 1. Key of e
- 2. Label p_.(v) of edge to parent
- 3. Label of tree node storing key(e)

Example:

Requirement: every tree node stores key of exactly one element (possible with ∞).

Invariant: the label of a tree node is a prefix of the key stored in it.

We first illustrate the structural changes for insert and delete.

Insert(e), $key(e)=k_5$: like in binary search tree

Delete(k₃): like in binary search tree

Search(x): (W: power of two)

Phase 1: binary search via msd-nodes

160 Chapter 3

Search(x): (W: power of two)

Phase 2: read keys from tree node

07.02.2018 161

Search(x): (W: power of two)

Phase 2: read keys from tree node

07.02.2018 162

```
• Let x \in \{0,1\}^W be represented by (x_1,...,x_W)
   Hash function: h:U \rightarrow [0,1)
search(x):
    // found, then done
    if key(T[h(x)])=x then return T[h(x)]
    // Phase 1: binary search for x
    s:=[log W]; k:=0; v:=T[h(\epsilon)]; p:=p_(v) \circ p<sub>x1</sub>(v) // v: root of Patricia trie
     while s >= 0 do
        // is there node with label (x_1,...,x_{k+2}^s) ? if (x_1,...,x_{k+2}^s) = b(T[h(x_1,...,x_{k+2}^s)]) // yes then k:=k+2^s; \ v:=T[h(x_1,...,x_k)]; \ p:=(x_1,...,x_k) \circ p_{x_{k+1}}(v) else if (x_1,...,x_{k+2}^s) is prefix of p
                  // edge from v covers (x_1,...,x_{k+2}^s)
                   then k = k + 2^s
         s:=s-1
    // to be continued with Phase 2...
```

```
search(x): (continued from previous slide)
  // Phase 1 stops at deepest v with b(v) being a
    prefix of (x_1,...,x_W)
  // Phase 2: find key of largest prefix
  if p_{x_{k+1}}(v) exists then
     v:=T[h(b(v) \circ p_{x_{k+1}}(v))]
  else
     V:=T[h(b(v) \circ p_{\overline{x_{k+1}}}(v))]
   if v is msd-node then
     v:=T[h(b(v) \circ p)] for bit sequence p out of v
   return key(v)
```

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 1: v is Patricia node

Binary representation of |b(v)| has ones at positions $i_1, i_2, ...$ (i_1 : maximal position)

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 1: v is Patricia node

will be found by binary search

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 1: v is Patricia node

07.02.2018

a) no msd-node at $2^{i_1}+2^{i_2}$: only if no Patricia node u with $2^{i_1}<|b(u)|\leq 2^{i_1}+2^{i_2}$, but this can be recognized via p_w

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 1: v is Patricia node

b) msd-node at 2ⁱ¹+2ⁱ²: is found by binary search

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 1: v is Patricia node

Correctness of phase 1:

- Let p be largest common prefix of x and an element y∈S and let |p|=(z_k,...,z₀).
- Patricia trie contains a route for prefix p
- Let v be last node on route till p
- Case 2: v is msd-node

v will also be the last node of binary search if it is an msd-node (argue like in case 1)

Number of HT accesses for longest prefix search:

O(log W) HT-lookups, where W is key length

Number of HT accesses for insert:

- O(log W) HT-lookups
- O(1) HT-updates

Number of HT accesses for delete:

- O(1) HT-lookups
- O(1) HT-updates

Application: distributed storage system

Goal: minimize number of accesses to servers for longest prefix match

Distributed Storage System

Standard approach for exact search:

distributed hash table (DHT)

Consistent Hashing

Choose two random hash functions h, g

Region that server v is responsible for

Consistent Hashing

- V: current set of servers
- succ(v): closest successor of v in V w.r.t. hash function h
 (where [0,1) is viewed as a cycle)
- pred(v): closest predecessor of v in V w.r.t. h

Assignment rules:

- One copy per data item: server v stores all items d with g(d)∈I(v), where I(v)=[h(v), h(succ(v))).
- k>1 copies per data item: d is stored in the above server
 v and its k-1 closest successors w.r.t. h

Distributed Patricia Trie Hashing

Distributed Patricia Trie Hashing

Number of DHT accesses for longest prefix search:

O(log W), where W is key length

Number of DHT accesses for insert:

- O(log W) for lookups
- O(1) for updates

Number of DHT accesses for delete:

- O(1) for lookups
- O(1) for updates