
Fundamental Algorithms

Chapter 7: String- and
Patternmatching

Christian Scheideler
WS 2017

Overview

• Basic notation
• A naive algorithm
• Rabin-Karp algorithm
• Knuth-Morris-Pratt algorithm
• Boyer-Moore algorithm
• Aho-Corasick algorithm
• Suffix trees

2/7/2018 Chapter 7 2

Basic Notation
• Alphabet Σ: finite set of symbols

|Σ|: cardinality of Σ
• String s: finite sequence of symbols over Σ

|s|: length of s
• ε: empty string, i.e., |ε|=0
• Σn: set of all strings over Σ of length n

Σ0={ε}
• Σ*=Ui≥0 Σi: set of all strings over Σ
• Σ+=Ui≥1 Σi: set of all strings over Σ except ε

2/7/2018 Chapter 7 3

Basic Notation
Definition 7.1: Let s=s1…sn and s´=s´1…s´m be strings

over Σ.
• s´ is called a substring of s if there is an i≥1 with

s´=sisi+1…si+m-1
• s´ is called a prefix of s if s´=s1s2…sm
• s´ is called a suffix of s if s´=sn-m+1sn-m+2…sn

There are two variants for the exact string matching
problem. Given two strings s (the search string) and t
(the text),
1. Determine if s is a substring of t, or
2. Determine all positions at which s is a substring of t

2/7/2018 Chapter 7 4

Basic Notation
Sample problem: find avoctdfytvv in

kvjlixapejrbxeenpphkhthbkwyrwamnugzhppfxiyjyanhapfwbghx
mshrlyujfjhrsovkvveylnbxnawavgizyvmfohigeabgksfnbkmffxjdf
ffqbualeytqrphyrbjqdjqavctgxjifqgfgydhoiwhrvwqbxgrixydzdfss
bpajnhopvlamhhfavoctdfytvvggikngkwzixgjtlxkozjlefilbrboiegwf
gnbzsudssvqymnapbpqvlubdoyxkkwhcoudvtkmikansgsutdjyth
apawlvliygjkmxorzeoafeoffbfxuhkzukeftnrfmocylculksedgrdsfe
Ivayjpgkrtedehwhrvvbbltdkctq

In general, |t|>>|s| (Google web search)

2/7/2018 Chapter 7 5

Basic Notation

Many applications:
• word processors
• virus scanning
• text information retrieval
• digital libraries
• computational biology
• web search engines

2/7/2018 Chapter 7 6

A naive Algorithm

Input: text t, search string s (|t|=n, |s|=m)

Algorithm SimpleSearch:
for i:=1 to n-m+1 do

j:=1
while j≤m and s[j]=t[i+j-1] do

j:=j+1
if j>m then output i

2/7/2018 Chapter 7 7

A naive Algorithm
Search string s: xkhthbkwy
Text t: kvavixkpejrbxeenppxkhthbkwy

Number of compared characters: n+3

2/7/2018 Chapter 7 8

- - - - xk-
- - - - - - x-

- - - - - xkhthbkwy

Is SimpleSearch
always good?

A naive Algorithm
Search string s: 000000001
Text t: 000000000000000000000001

Number of compared characters: n⋅m

2/7/2018 Chapter 7 9

00000000-
00000000-
00000000-
00000000-
00000000-
00000000-

…

In the worst case,
SimpleSearch has

a bad runtime!

Karp-Rabin Algorithm
• Σ: alphabet of size q-1
• U: set of all q-ary numbers
• f:Σ*→U arithmetization of strings over

Σ={c1,…,cq-1} with the property that
– f(ε) = 0
– f(ci) = i for all i∈{1,…,q-1}
– f(s) = Σi=0

n-1 f(si)⋅qi for all strings s=s0…sn-1

For every x∈U there is at most one string s with
f(s)=x, so f is injective.

2/7/2018 Chapter 7 10

Karp-Rabin Algorithm
Idea: use hashing

Example:
• use hash function h(x) = x mod 97
• search for 59265 in 31415926535897932384626433

• hash value of search string: h(59265) = 95
• Text hashes:

31415926535897932384626433

31415 = 84 (mod 97)
14159 = 94 (mod 97)
41592 = 76 (mod 97)
15926 = 18 (mod 97)

59265 = 95 (mod 97) → match!

Problem: hash uses m characters, so still running time n⋅m!

2/7/2018 Chapter 7 11

x: arithmetization of some string

Karp-Rabin Algorithm
Additional idea: use hash of previous position to compute new hash

14159 = (31415 – 30000)⋅10 + 9
14159 mod 97 = (31415 mod 97 – 30000 mod 97)⋅10 + 9 (mod 97)

= (84 – 3⋅9)⋅10 + 9 (mod 97)
= 579 mod 97 = 94

Example:
• hash value of search string: 59265 mod 97 = 95
• Text hashes:

31415926535897932384626433

31415 mod 97 = 84
14159 mod 97 = (84 – 3⋅9)⋅10 + 9 (mod 97) = 94
41592 mod 97 = (94 – 1⋅9)⋅10 + 2 (mod 97) = 76
15926 mod 97 = (76 – 4⋅9)⋅10 + 6 (mod 97) = 18

2/7/2018 Chapter 7 12

precompute 9 = 10000 (mod 97)

Karp-Rabin Algorithm
In general:
• consider a search string s of length m over some alphabet Σ of size

q-1
• let h(x) = x mod p for some prime p>q
• compare h(f(s)) with h(f(ti…tm+i-1)) by computing yi=h(f(ti…tm+i-1)) in the

following way:
y1 = f(t1…tm) mod p
yi+1 = (yi - f(ti)⋅d)⋅q + f(ti+m) (mod p) for all i≥m

where d=q|s|-1 mod p
• whenever yi = h(f(s)), output i

Problem: It can happen that h(f(s))=h(f(ti…tm+i-1)) but s≠ti…tm+i-1. We call
this a wrong matching.

Solution: As we will see, this is unlikely to happen if p is sufficiently large.

2/7/2018 Chapter 7 13

Karp-Rabin Algorithm
Karp-Rabin Algorithm:

q:=|Σ|+1; m:=|s|; n:=|t|; d:=1
x:=0 // for f(s) mod p
y:=0 // for f(ti…tm+i) mod p
for i:=1 to m-1 do

d:=q⋅d mod p
for i:=1 to m do

x:=q⋅x+f(si) mod p
y:=q⋅y+f(ti) mod p

for i:=1 to n-m+1 do
if x=y then

if s=(ti…tm+i-1) then output i
if i≤n-m then

y:=(y - f(ti)⋅d)⋅q + f(ti+m) mod p

2/7/2018 Chapter 7 14

to be on the safe side

Karp-Rabin Algorithm
Analysis of the Karp-Rabin Algorithm:

Definition 7.2: For some natural number x let
π(x) be the number of prime numbers that are
at most x.

Lemma 7.3 (Prime Number Theorem): For any
x≥29, 0.922⋅x/(ln x) ≤ π(x) ≤ 1.105⋅x/(ln x).

Lemma 7.4: For x≥29, the product of all prime
numbers that are at most x is larger than 2x.

2/7/2018 Chapter 7 15

Karp-Rabin Algorithm
Corollary 7.5: If x≥29 and y≤2x, then y has less

than π(x) different prime divisors.
Proof:
• Suppose that y has k≥π(x) many different prime

divisors q1,…,qk. Then
2x ≥ y ≥ q1⋅q2⋅…⋅qk.

• But q1⋅q2⋅…⋅qk is at least as large as the product
of the first k primes, which is at least as large as
the product of the first π(x) primes.

• Hence, Lemma 7.4 leads to a contradiction.

2/7/2018 Chapter 7 16

Karp-Rabin Algorithm
Lemma 7.6: Let s and t be strings over an alphabet

of size q-1 with m⋅log q≥29, where |s|=m and
|Σ|=q-1. Let P be an natural number. If p is a
random prime number ≤P, then the probability of
a wrong matching of the hashes of s and ti…tm+i-1
for some fixed i is at most π(m⋅log q)/π(P).

Proof:
• Consider some fixed i with f(s)≠f(ti…tm+i-1).
• Certainly, |f(s)-f(ti…tm+i-1)|≤qm = 2m⋅log q.
• Hence, Corollary 7.5 implies that |f(s)-f(ti…tm+i-1)|

can have at most π(m⋅log q) prime divisors.

2/7/2018 Chapter 7 17

Karp-Rabin Algorithm
Proof (continued):
• Since f(s) mod p = f(ti…tm+i-1) mod p, p

divides |f(s)-f(ti…tm+i-1)|.
• Hence, p is a prime divisor of this product.
• If p admits a wrong matching, then p must be

one of at most π(m⋅log q) many prime
divisors.

• Since p is randomly chosen out of π(P), the
probabiliy that p admits a wrong matching is
at most π(m⋅log q)/π(P).

2/7/2018 Chapter 7 18

Karp-Rabin Algorithm
Theorem 7.7: Let s and t be strings with m⋅log q≥29 and let P=m2⋅log q, where

|t|=n, |s|=m, and |Σ|=q-1. If s is contained k times in t, then the expected
runtime of Karp-Rabin is O(n+k⋅m).

Proof:
• R: set of positions in t at which s does not start.
• For each position i∈R we define a binary random variable Xi to be 1 if and

only if there is a wrong matching at position i.
• Let N=m⋅log q. From Lemma 7.3 and Lemma 7.6 we know that

π(N) 1.105 N/ln(N) 1.2 ln(N⋅m) 2
π(P) 0.922 N⋅m/ln(N⋅m) m ln(N) m

• Let X=Σi∈R Xi. Due to the linearity of expectation,
E[X] = Σi∈R E[Xi] ≤ 2|R|/m

• Since a wrong matching consumes O(m) time and otherwise we just need
time O(1) for a position i∈R, the expected total runtime is O(n) for R.

• For the k positions of t that contain s, a total runtime of O(k⋅m) is needed.
• Combining the runtimes results in the theorem.

2/7/2018 Chapter 7 19

E[Xi] ≤ ≤ ≤ ≤

Knuth-Morris-Pratt Algorithm
Observation: on mismatch at the i-th symbol in the

search string, we know the previous i-1 symbols in
the text.

Idea: precompute what to do on a mismatch

Example:
• search string s: ababcab
• text: ababa….

ababcab
ababcab (shift s by two for next possible

match and continue scanning
at current position a in the text)

2/7/2018 Chapter 7 20

Knuth-Morris-Pratt Algorithm
In general:
• Suppose that (s1…si)=(t1…ti) but si+1≠ti+1.
• Then move to the first position d in t so that (s1…si-d+1) =

(td…ti) and continue with scanning the text at ti+1.
• In this case, it certainly holds that (s1…si-d+1) = (sd…si).
• We want to determine these jumps for all i in a

preprocessing.

2/7/2018 Chapter 7 21

1 d is:

1 i-d+1

i+1= =

≠

…

1 it: i+1= =…

Knuth-Morris-Pratt Algorithm
In general:
• Suppose that (s1…si)=(t1…ti) but si+1≠ti+1.
• Then move to the first position d in t so that (s1…si-d+1) =

(td…ti) and continue with scanning the text at ti+1.
• In this case, it certainly holds that (s1…si-d+1) = (sd…si).
• We want to determine these jumps for all i in a

preprocessing.

Goal of the preprocessing:
• For every position i in s, find the minimal d>1 so that

(s1…si-d+1) = (sd…si). If there is no such d, we set it to i+1.
• Let the resulting d for that i be denoted di.
• The di´s will be stored in an array so that they are quickly

accessible to the KMP algorithm.

2/7/2018 Chapter 7 22

Knuth-Morris-Pratt Algorithm
Preprocessing:
For each i, find
minimial di so that

Lemma 7.8: For every i∈{1,…,m-1}, di≤di+1.
Proof:
• Consider an arbitrary i.
• There is no 1<d<di with (sd…si) = (s1…si-d+1).
• Hence, there cannot be a 1<d<di with

(sd…si+1) = (s1…si-d+2), which implies that di≤di+1.

But how can we compute exact values of di?

2/7/2018 Chapter 7 23

1 di is:

1 i-di+1

i+1= =…

Knuth-Morris-Pratt Algorithm
• Suppose that we have already computed d1,

…,di and we want to compute di+1. The first
candidate according to Lemma 7.8 would be
di. For di it holds that (s1…si-di+1) = (sdi…si).
If also s(i+1)-di+1=si+1, then (s1…s(i+1)-di+1) =
(sdi…si+1) and we can set di+1=di.

2/7/2018 Chapter 7 24

1 di is:
1 i-di+1 (i+1)-di+1

i+1

Knuth-Morris-Pratt Algorithm
• If s(i+1)-di+1≠si+1, then we have not yet found a

matching for si+1. Let i´=i-di+1. Then we have to
find for (s1…si´) the first d with (s1…si´-d+1) =
(sd…si´). The first candidate for that is di´ since
(s1…si´-di´+1) = (sdi´…si´). If also s(i´+1)-di´+1=si+1, then
we can set di+1=di+(di´-1).

2/7/2018 Chapter 7 25

1 di is:
1 i-di+1 (i+1)-di+1

i+1

1 i´-di´+1

1 di´ i´

(i´+1)-di´+1

di+1

=

Knuth-Morris-Pratt Algorithm
• If s(i´+1)-di´+1≠si+1, then we set i´´=i´-di´+1

and we continue our search as for i´.

2/7/2018 Chapter 7 26

1 di is:
1 i-di+1 (i+1)-di+1

i+1

1 i´-di´+1

1 i´

(i´+1)-di´+1

1 i´´

Knuth-Morris-Pratt Algorithm
From these rules we can construct an efficient algorithm for
computing the di-values:

Algorithm KMP-Preprocessing:
d0:=2; d1:=2 // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1)

di:=δ

Example: s=ababaca

2/7/2018 Chapter 7 27

i 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7

Knuth-Morris-Pratt Algorithm
Algorithm KMP-Preprocessing:

d0:=2; d1:=2 // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1)

di:=δ

Theorem 7.9: The runtime of the KMP-Preprocessing is O(m).
Proof:
• Since all di≥2, δ will be increased in each while loop.
• Since the condition of the while loop cannot be satisfied again once

δ>m, the while loop is executed at most m times over all iterations of
the for-loop.

• The for-loop is executed at most m times as well.

2/7/2018 Chapter 7 28

Knuth-Morris-Pratt Algorithm
Algorithm KMP:

execute KMP-Preprocessing
i:=1 // current position in t
j:=1 // current starting position of s in t
while i≤n do

if j≤i and ti≠si-j+1 then
j:=j+di-j-1

else
if i-j+1=m then // match found

output j
j:=j+dm -1

i:=i+1

2/7/2018 Chapter 7 29

1 i-js: i-j+1

t: ti=si-j+1?j i-1

Knuth-Morris-Pratt Algorithm

Theorem 7.10: The runtime of the KMP
algorithm is O(n).

Proof:
• In each while-loop, i or j is increased.
• Since i and j are bounded above by n, the

theorem follows.

Can we be faster than linear time?

2/7/2018 Chapter 7 30

Knuth-Morris-Pratt Algorithm
Further improvement of KMP-Preprocessing:

Original goal of the preprocessing:
• For every position i in s, find the minimal d>1 so that

(s1…si-d+1) = (sd…si). If there is no such d, we set it to i+1.

Improved goal of the preprocessing:
• For every position i in s, find the minimal d´>1 so that

(s1…si-d´+1) = (sd´…si) and si-d´+2≠si+1. If there is no such d´, we
set it to i+2.

2/7/2018 Chapter 7 31

1 d´ is:
1 i-d´+1 (i+1)-d´+1

i+1

t: tj≠si+1

should be different!

Knuth-Morris-Pratt Algorithm
Algorithm KMP-Preprocessing2:

d0:=2; d1:=2 // movement of s by 1
δ:=d1 // current shifting position of s
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+di-δ -1

di:=δ
// computation of d´-values
d´0:=2
for i:=1 to m-1 do

if di>i then // no matching parts
if s1≠si+1 then d´i:=di else d´i:=di+1

else
if di+1>di then // mismatch at i+1

d´i:=di
else

i´:=i - di + 1
d´i:=di + d´i´ - 1

d´m:=dm // all symbols are matching

2/7/2018 Chapter 7 32

1 di is:

1 i-di+1 (i+1)-di+1

i+1

1 i´-d´i´+1

1 i´

(i´+1)-d´i´+1

=

≠

1 is:

s1

di
≠

Knuth-Morris-Pratt Algorithm
Example: s=ababaca

KMP-Preprocessing:

KMP-Preprocessing2:

Better, but still not faster than linear time.

2/7/2018 Chapter 7 33

i 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7

i 0 1 2 3 4 5 6 7
d´i 2 2 4 4 6 3 8 7

Boyer-Moore Algorithm
Idea: compare search string s with a text t from right to

left.

Example: s=OHO, t=ALCOHOLIC
ALCOHOLIC
OHO ← mismatch at first letter, no C in OHO

OHO ← match
OHO ← mismatch at first letter,

no I in OHO, so we are done

A runtime of O(n/m) is possible.
2/7/2018 Chapter 7 34

+3

+2

Boyer-Moore Algorithm
Algorithm Naive Boyer-Moore:

i:=1
while i≤n-m+1 do

j:=m // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i // match found
i:=i+1

Naive Boyer-Moore Algorithm doesn´t jump forward quickly
enough, but there are various ways to accelerate that.
2/7/2018 Chapter 7 35

j+1 ms:

i+j-2 i+m-1t: = …
1 j-1

i i+j

j

i+j-1 =

Boyer-Moore Algorithm
Occurance shift preprocessing:
• For every c∈Σ, compute

last[c]:=max{ j∈{1,…,m} | sj=c }
If there is no c in s, set last[c]:=0.

Can certainly be done in O(m) time.

Boyer-Moore algorithm with occurance shift:
i:=1
while i≤n-m+1 do

j:=m // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}

2/7/2018 Chapter 7 36

Boyer-Moore Algorithm
Boyer-Moore algorithm with occurance shift:

i:=1
while i≤n-m+1 do

j:=m // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}

2/7/2018 Chapter 7 37

j+1 ms: j

t: i+j-1i

1
last[ti+j-1]

Or better: i:=i+(dm-1)

Boyer-Moore Algorithm
Boyer-Moore algorithm with occurance shift:

i:=1
while i≤n-m+1 do

j:=m // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}

In practice, this is already much faster, but we can do
better with the following suffix rule.

2/7/2018 Chapter 7 38

Boyer-Moore Algorithm
1. Compute the minimal d1∈ {1,…j} with sj-d1+1≠sj (BM2) and

(sj-d1+2…sm-d1+1)=(sj+1…sm) (BM1). If there is no such d1, we
set d1 to m+1.

2. Compute the minimal d2∈{j+1,…m} with (s1…sm-d2+1) =
(sd2…sm). If there is no such d2, we set d2 to m+1.

2/7/2018 Chapter 7 39

j+1 m

j-d1+2 m-d1+1

j

j-d1+1

j+1 d2 m

1 m-d2+1

j

1 d1

1

Boyer-Moore Algorithm
The suffix rule allows us to increase i by d=min(d1,d2)
without missing a matching. For all 0≤j≤m let Dj=d for
the d above. With these Dj-values we can run the
improved Boyer-Moore Algorithm.

Algorithm Boyer-Moore:
execute BM-Preprocessing to obtain D
i:=1
while i≤n-m+1 do

j:=m
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output j // match found
i:=i+Dj-1 // only change compared to naive BM

2/7/2018 Chapter 7 40

Boyer-Moore Algorithm

Example: s=abaababaabaab

It is not so easy to compute that efficiently…

2/7/2018 Chapter 7 41

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
sj a b a a b a b a a b a a b
Dj 8 8 8 8 8 8 8 8 3 11 11 6 13 1

Boyer-Moore Algorithm
First, we consider the problem of implementing rule 2 of the suffix rule:
• Compute the minimal d2∈{j+1,…m} with (s1…sm-d2+1) = (sd2…sm). If

there is no such d2, we set d2 to m+1. Let us call this d2 dj,2.

• Let d0,…,dm be the values from the KMP preprocessing.
• It is easy to see that d0,2=dm.
• For j>0, we keep shifting s until dj,2>j.

2/7/2018 Chapter 7 42

j+1 dj,2 m

1 m-dj,2+1

j

j+1 m

1 di i

j

1 i-di+1

Boyer-Moore Algorithm
• Let d0,…,dm be the values from the KMP preprocessing.
• It is easy to see that d0,2=dm. For j>0, we keep shifting s until

dj,2>j.

d0,2:=dm
δ:=dm; i:=m-δ+1 // δ: shift candidate for dj,2
for j:=1 to m do

if j≥δ then // j too large: one more shift
δ:=δ+(di-1)
i:=i-di+1

dj,2:=δ
2/7/2018 Chapter 7 43

j+1 m

1 di i

j

1 i-di+1

Boyer-Moore Algorithm
d0,2:=dm
δ:=dm; i:=m-δ+1 // δ: shift candidate for dj,2
for j:=1 to m do

if j≥δ then // j too large: one more shift
δ:=δ+(di-1)
i:=i-di+1

dj,2:=δ

Example: s=ababaca

2/7/2018 Chapter 7 44

i / j 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7

dj,2 7 7 7 7 7 7 7 8

Boyer-Moore Algorithm
Next, we want to implement rule 1 of the suffix rule:

Remember improved KMP-preprocessing:
• For every position i in s, find the minimal d´>1 so that

(s1…si-d´+1) = (sd´…si) and si-d´+2≠si+1. If there is no such d´, we
set it to i+2.

2/7/2018 Chapter 7 45

minimize dj,1

1 d´ is:
1 i-d´+1 (i+1)-d´+1

i+1
mismatch

d´-1
related
problem!

d´-1

j+1 m

j-dj,1+2 m-dj,1+1

j

j-dj,1+1

1 dj,1

1

Boyer-Moore Algorithm

• Let s´ be the reverse s. Then we obtain the following equivalent
problem for s´:

• Substituting j by m-j and re-defining dj,1:=dm-j,1 gives us:

2/7/2018 Chapter 7 46

minimize dj,1

j+1 m

j-dj,1+2 m-dj,1+1

j

j-dj,1+1

1 dj,1

1

(m-j)-dj,1

m-j+1

dj,1 (m-j)+dj,1-1

1 m-j
minimize dj,1

j+dj,1

j+1

dj,1 j+dj,1-1

1 j
minimize dj,1

Boyer-Moore Algorithm
• So we have:

In the KMP-Preprocessing2 we solve:

• So for each j we can set dj,1:=min{ d´i | i∈{1,…,m-1}, i-d´i+1=j }. For
all other j´s there is no solution, so we use the default value given in
rule 1.

2/7/2018 Chapter 7 47

dj,1-j

j+1

dj,1 j+dj,1-1

1 j
minimize dj,1

1 d´i i

1 i-d´i+1 (i+1)-d´i+1

i+1
mismatchminimize d´i

Boyer-Moore Algorithm
So for the original j we use the rule:

dj,1:= min{ d´i | i∈{1,…,m-1}, i-d´i+1=j }.
If no such i exists, we set dj,1:=m+1.

Algorithm for rule 1:
compute d´1,…,d´m-1 for s´
for j:=0 to m do

dj,1:=m+1
for i:=1 to m-1 do

j:=m-(i-d´i+1)
if j≤m and d´i<dj,1 then

dj,1:=d´i

2/7/2018 Chapter 7 48

Boyer-Moore Algorithm
// computation of d-values for s´
d0:=2; d1:=2 // movement of s by 1
δ:=d1 // current shift position of s
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+di-δ -1

di:=δ

Example: s=ababaca, so s´=acababa

2/7/2018 Chapter 7 49

i 0 1 2 3 4 5 6 7
di 2 2 3 3 5 5 7 7
d´i 2 2 4 3 6 5 8 7

// computation of d´-values for s´
d´0:=2
for i:=1 to m-1 do

if di>i then // no matching parts
if s1≠si+1 then d´i:=di else d´i:=di+1

else
if di+1>di then // mismatch at i+1

d´i:=di
else

i´:=i - di + 1
d´i:=di + d´i´ - 1

d´m:=dm // all symbols are matching

Boyer-Moore Algorithm

compute d´1,…,d´m-1 for s´
for j:=0 to m do

dj,1:=m+1
for i:=1 to m-1 do

j:=m-(i-d´i+1)
if j≤m and d´i<dj,1 then

dj,1:=d´i

Example: s=ababaca, so s´=acababa

2/7/2018 Chapter 7 50

i / j 0 1 2 3 4 5 6 7
d´i 2 2 4 3 6 5 8 7
dj,1 8 8 8 8 8 8 3 2

j+1 m

j-dj,1+2 m-dj,1+1

j

j-dj,1+1

1 dj,1

1

Boyer-Moore Algorithm
Example: s=ababaca. Remember that Dj=min{dj,1,dj,2}.

Hence, most of the time there are very large jumps.

2/7/2018 Chapter 7 51

j 0 1 2 3 4 5 6 7
dj,1 8 8 8 8 8 8 3 2
dj,2 7 7 7 7 7 7 7 8
Dj 7 7 7 7 7 7 3 2

Boyer-Moore Algorithm
One can show the following result:

Theorem 7.11: Let k be the number of times the
search string occurs in the text. Then the Boyer-
Moore Algorithm has a runtime of O(n+k⋅m).

The proof is very complex and omitted here.

Remarks:
• If (BM2) is dropped, then the runtime increases to

O(n⋅m).
• In practice, the Boyer-Moore Algorithm has a

runtime of O(n/m).

2/7/2018 Chapter 7 52

Boyer-Moore Algorithm
Remarks:
• To reduce the runtime from O(n+km) to O(n+m), we can use

the fact that whenever s has been found in t, we only have to
check sj=ti+j-1 for j∈{m-dm+2,…,m}.

• To further reduce the runtime, we can combine the suffix rule
with the occurance shift rule by setting
i:=i+max{ Dj-1, j-last[ti+j-1]}.

2/7/2018 Chapter 7 53

1 dm ms:

i i+m-1t: = … =
1 m-dm+1 m-dm+2 m

== …

Aho-Corasick Algorithm
Now we have the following situation: search in

a text t for all positions in which a search
string in S={s1,…,sk} starts.

In the following let mi=|si| and m = Σi=1
k mi.

First idea: run the KMP algorithm in parallel for
all search strings.

Runtime: O(m+k⋅n)

2/7/2018 Chapter 7 54

preprocessing main algorithm

Aho-Corasick Algorithm
Better idea: instead of tables of di-values, use a finite

automaton.

Example: let s=abaaba
• Table of di-values:

• Finite automaton:

2/7/2018 Chapter 7 55

i 0 1 2 3 4 5 6
di 2 2 3 3 4 4 4

0 1 2 3 4 5 6a b a a b a-1

Aho-Corasick Algorithm
Example: let s=abaaba
• Table of di-values:

• Finite automaton:

2/7/2018 Chapter 7 56

i 0 1 2 3 4 5 6
di 2 2 3 3 4 4 4

0 1 2 3 4 5 6a b a a b a

Regular transition Failure transition Accepting state:
s found

State i: first i
symbols match

-1

5-d5+1

Aho-Corasick Algorithm
Example: let s=abaaba

This is called an AC-automaton.

Definition 7.12: An AC-automaton consists of:
• Q: a finite set of states
• Γ=Σ∪{fail} : a finite alphabet (with input alphabet Σ)
• δ:Q×Γ→Q: a transition function
• q0: an initial state and
• F⊆Q: a set of accepting states
2/7/2018 Chapter 7 57

0 1 2 3 4 5 6a b a a b a-1

Aho-Corasick Algorithm
Example: let s=abaaba

AC-automaton for s∈Σ* with |s|=m:
• Q={-1,0,1…,m}, q0=0, and F={m}
• Γ=Σ∪{fail}
• For all i∈{0,…,m-1}, δ(i,si+1)=i+1
• For all i∈{0,…,m}, δ(i,fail)=i-di+1

The fail-transition is used if a symbol is read that does
not have a regular transition.

2/7/2018 Chapter 7 58

0 1 2 3 4 5 6a b a a b a-1

Aho-Corasick Algorithm
AC preprocessing for a single search string s:

Algorithm AC-Preprocessing:
d0:=2; d1:=2 // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1)

di:=δ
// compute f0,…,fm for fail transitions
for i:=0 to m do fi:=i-di+1

Lemma 7.13: The AC preprocessing has a runtime of O(m).
Proof: follows from KMP proprocessing.

2/7/2018 Chapter 7 59

Aho-Corasick Algorithm
Aho-Corasick Algorithm for one search string:

execute AC-Preprocessing
j:=0 // starting position in automaton
for i:=1 to n do

while (j≠-1 and ti≠sj+1) do
j:=fj

j:=j+1
if j=m then output i-m+1

Theorem 7.14: The AC algorithm for a single search
string is correct and runs in time O(n).

Proof: follows from analysis of KMP algorithm

2/7/2018 Chapter 7 60

Aho-Corasick Algorithm
AC automaton for a set S of multiple search strings:
• Q={ w∈Σ* | w is a prefix of an s∈S}∪{fail} and q0=ε
• F=F1∪F2 where

– F1=S and
– F2={w∈Σ* | ∃s∈S: s is a suffix of w}

• For all w∈Q and a∈Σ it holds:
– δ(w,a) = w∘a whenever w∘a∈Q, and otherwise
– δ(w,fail)=w´ for the w´∈Q representing the largest

suffix of w. For w=ε, δ(w,fail)=fail (where „fail“
represents the state that was previously „-1“).

2/7/2018 Chapter 7 61

Aho-Corasick Algorithm

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 62

ε h
h

fail he her hers

s

hi his

sh she

e r s

i
s

s

h e

he hers

his

he, she

Aho-Corasick Algorithm
Aho-Corasick Algorithm for a set S of search strings:
• m: sum of lengths of all s∈S
• fw: state reached by δ(w,fail)
• Sw: set of all s∈S that are a suffix of w

execute Extended-AC-Preprocessing
w:=ε // starting position in AC automaton
for i:=1 to n do

while (w≠fail and δ(w,ti) is not defined) do
w:=fw

if w=fail then w:=ε else w:=w∘ti
if w∈F then output (i,Sw)

Theorem 7.15: The AC algorithm is correct and has a runtime of
O(n+m).

Proof: it remains to specify Extended-AC-Preprocessing
2/7/2018 Chapter 7 63

Extended-AC-Preprocessing
The AC automaton for S can be constructed in

three phases:
Phase I: construct the prefix tree of S with the

regular transitions and mark the states
belonging to F1

Phase II: compute the fail transitions in
breadth-first-search order starting with state ε

Phase III: compute the states belonging to F2
and the sets Sw for all w∈F1∪F2 in breadth-
first-search order starting with state ε

2/7/2018 Chapter 7 64

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase I: construct the prefix tree of S with the regular transitions

and mark the states belonging to F1

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 65

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase I: construct the prefix tree of S with the regular transitions

and mark the states belonging to F1

Algorithm for Phase I:
Build a trie for S and set F:=S

Runtime: O(m)

2/7/2018 Chapter 7 66

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 67

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 68

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 69

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 70

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 71

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order

starting with state ε

Algorithm for Phase II: similar to KMP preprocessing
• Consider a state of the AC automaton representing s1…si+1.

Start with fail transition of s1…si for largest potential suffix for
fail transition of s1…si+1.

2/7/2018 Chapter 7 72

1 di is:
1 i-di+1 (i+1)-di+1

i+1

Largest suffix for s1…si
(which might come from
some other string s´!)

Extended-AC-Preprocessing
Phase II:
• Initialization:

– fε:=fail
– fa:=ε for all a∈Σ

• For all w∈Q\{ε} in BFS order:
– fw:=fpred(w) // pred(w): w without last symbol
– while (fw≠fail and δ(fw,last(w)) undefined) do

// last(w): last symbol of w
fw:=ffw

– if fw=fail then fa:=ε else fw:=δ(fw,last(w))

Lemma 7.16: The Extended-AC-Preprocessing needs at most
O(m) time to compute the AC automaton.

Proof: Exercise.

2/7/2018 Chapter 7 73

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 74

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Sε={}

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 75

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Sε={}

Ss=Sfs={}

Sh=Sfh={}

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 76

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Sε={}

Ss={}

Sh={}

Ssh=Sfsh={}

Shi=Sfhi={}

She={he}∪Sfhi={he}

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 77

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Sε={}

Ssh={}

Shi={}

She={he}

Ss={}

Sh={} Sher=Sfher={}

Shis={his}∪Sfhis={his}

Sshe={she}∪Sfshe={he,she}

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 78

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e

Sε={}

Ssh={}

Shi={}

She={he}

Ss={}

Sh={} Sher={}

Shis={his}

Sshe={he,she}

Shers= {hers}∪Sfhers

= {hers}

Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Algorithm of Phase III:
• For all w∈Q\F do Sw:={} // at this point we still have F=F1
• For all w∈F do Sw:={w}
• For all w∈Q\{ε} in BFS order:

- Sw:=Sw∪Sfw

- if Sw≠{} then F:=F∪{w}

Runtime: O(m) (when storing Sw‘s implicitly via links)

2/7/2018 Chapter 7 79

Aho-Corasick Algorithm
Aho-Corasick Algorithm for regular expressions (basic idea):
• Build non-deterministic finite automaton (NFA) for that regular

expression with starting state q0.
• Add transitions δ(q0,c)=q0 for every c∈Σ to take into account

that the string s matching the regular expression in the given
text t could start at any point in t.

• Convert the NFA into a deterministic automaton (DFA) using
the power set method, if the state-space of the DFA does not
get too large.

Theorem 7.17: With an NFA of size m for the regular expression
R, it can be checked in O(n⋅m) time whether there is a substring
s in t with s∈R. With a DFA, the runtime can be reduced to O(n),
but the time needed to set up the DFA might be around O(2m).

2/7/2018 Chapter 7 80

Suffix Trees
• Given a text t, we now consider the problem of

preprocessing t so that we can check for any search
string s of length m in O(m) time whether s is a
substring of t.

• Solution: suffix tree of t

Definition 7.18: Let t=t1…tn-1$ be a text with special end
symbol $.
• t[i..n]=ti…tn denotes the suffix of t starting with ti.
• The suffix trie ST(t) of t is the trie resulting from the

strings t[1..n],t[2..n],…,t[n..n] (see Section 3). Every
leaf of ST(t) stores i if and only if it represents t[i..n].

2/7/2018 Chapter 7 81

Suffix Trees

Example: t=abcabc$.

2/7/2018 Chapter 7 82

7

1

4

5

2

3

6

a

b

c
a

b

c

$

$

$

b c
$

c

a

b

c

$

b

c

$

$

ST(t):

Suffix Trees
Remarks:
• If we want to check whether s is a substring of t, we simply

follow the unique path in ST(t) whose edge labels form s. If
this path exists, s is indeed a substring of t, and otherwise this
is not the case. Certainly, this checking can be done in O(|s|)
time.

• If we additionally want to know all positions at which s starts in
t, we need to determine the set of all i∈{1,..,n} stored in the
leaves reachable from the trie node representing s in ST(t).

Problem: ST(t) may have Θ(n2) many nodes, where n is the
length of t. This is the case, for example, for t=ambm$.

Solution: Condense ST(t) to the Patricia trie of ST(t).

2/7/2018 Chapter 7 83

Suffix Trees
Definition 7.19: The suffix tree PT(t) of t is the Patricia
trie of ST(t).

Example: t=abcabc$.

2/7/2018 Chapter 7 84

7

1

4

5

2

3

6

a

b

c
a

b

c

$

$

$

b c
$

c

a

b

c

$

b

c

$

$

ST(t):
7

1

4 5

2

3

6

abc

a

bc$

$ $

bc
c

$

a

$
bc$

bc$

PT(t):

Suffix Trees
Lemma 7.20: For any text t=t1…tn-1$, PT(t) consists of just O(n) nodes.
Proof: follows from the properties of Patricia tries.

For every node v in PT(t) define
• count(v): number of leaves below it,
• first(v): minimum index i stored below it, and
• last(v): maximum index i stored below it.
Suppose that every node v in PT(t) stores count(v), first(v), and last(v).

Theorem 7.21: For every search string s, the following queries can be
answered in O(|s|) time:
• Find the first occurence of s in t.
• Find the last occurence of s in t.
• Find the number of times s occurs in t.

2/7/2018 Chapter 7 85

Suffix Trees
Problem: How to construct PT(t) efficiently?

Naive approach:
T0:= suffix tree just consisting of the root
for i:=1 to n do

Ti:=insert(Ti-1,t[i..n])

Runtime of insert(Ti-1,t[i..n]):
• Standard approach of traversing the edges of Ti-1 from the root:

time O(n) (since depth of Ti-1 can be proportional to i and up to n-i
characters may have to be checked to find insertion point)

• When using the hashed Patricia trie with msd-nodes and ignoring
work for individual character comparisons: runtime is O(log n)

In any case, the best achievable bound seems to be O(n log n) for
constructing PT(t).

2/7/2018 Chapter 7 86

Suffix Trees
The algorithm of McCreight can construct PT(t) in time O(n) (including
the time for character comparisons). To understand that algorithm we
need some notation.

Definition 7.22:
• For any node v in a suffix tree T let path(v) be the concatenation of

edge labels from the root of T down to v.
• For any string α∈Σ*, we say that α∈T if there is a node v in T with α

being a prefix of path(v).
• For any i∈{1,…,n}, let head(i) be the longest prefix of t[i..n] that is a

prefix of some t[j..n] with j<i. Let tail(i) be t[i..n] without head(i).

2/7/2018 Chapter 7 87

head(i) tail(i)
i n

j n
…

Suffix Trees
Note that head(i) is the place where the new node v with
path(v)=t[i..n] needs to be inserted into Ti-1.

If we can find head(i) efficiently, we can quickly insert
t[i..n]. For that we need so-called suffix links.

2/7/2018 Chapter 7 88

t[i..n]t[i..n]

head(i) head(i)

Suffix Trees
Lemma 7.23: Consider any a∈Σ and β∈Σ*, and let Ti be defined
as in the naive suffix tree algorithm. If head(i-1)=aβ then β is a
prefix of head(i).
Proof:
• Let head(i-1)=aβ.
• Then there is a j<i with aβ being a prefix of

t[j-1..n].
• Hence, β is a prefix of t[j..n] and t[i..n].
• Therefore, β is a prefix of head(i).

2/7/2018 Chapter 7 89

head(i-1) tail(i-1)
i ni-1

j n
…

j-1

Suffix Trees
Definition 7.24: Let u and v be two inner nodes of a suffix tree T.
Then suf[u]=v if and only if there is a c∈Σ with path(u)=c∘path(v).
suf[u] is called the suffix link of u.

Lemma 7.25: If u is an inner node in Ti-1 then suf[u] is an inner
node in Ti.

2/7/2018 Chapter 7 90

cα

u

β

v

αβ path(u)=cαβ

path(v)=αβ

suf[u]

Suffix Trees
Lemma 7.25: If u is an inner node in Ti-1 then suf[u] is an inner node in
Ti.
Proof:
• Suppose that u is an inner node in Ti-1.
• Then there are j1,j2<i with path(u) being the longest common prefix

of t[j1..n] and t[j2..n].
• But then path(suf[u]) is the longest common prefix of t[j1+1..n] and

t[j2+1..n], which implies that suf[u] is an inner node in Ti.

2/7/2018 Chapter 7 91

path(u)

j2+1 nj2

j1+1 n
…

j1

path(suf[u])

Suffix Trees
Recall the naive algorithm:
T0:= suffix tree just consisting of the root
for i:=1 to n do

Ti:=insert(Ti-1,t[i..n])

This is also the basic framework for the algorithm of McCreight,
but the insertion of t[i..n] into Ti-1 is performed differently from the
standard insert:
• At the beginning of the i-th iteration, we assume that all nodes

except for the node v with path(v)=head(i-1) have a suffix link.
• Given that the algorithm knows head(i-1) at the beginning of

the i-th iteration, it will make use of the suffix links to efficiently
locate head(i), which will allow it to insert t[i..n].

• This strategy is called Up-Link-Down.

2/7/2018 Chapter 7 92

Suffix Trees
Up-Link-Down Strategy:
• Let x be the node in Ti-1 with path(x)=head(i-1) and let y be

the father of x. Suppose that head(i-1)=aαβ with a∈Σ and
α,β∈Σ*, as shown in the figure.

• According to Lemma 7.23, we know that αβ∈Ti-1 and that
head(i)=αβγ for some γ∈Σ*.

• Since x does not have a suffix link, we go to y and use the
suffix link from there. This leads to a node u with path(u)=α.

2/7/2018 Chapter 7 93

aα

x

β
u

suf[y]

α

y

Suffix Trees
Up-Link-Down Strategy (continued):
• We follow the links downwards from u till we reach the node v

with path(v) being the longest prefix of αβ. Up to that node we
only have to look at the first character of each edge (fastfind)
since we know that αβ∈Ti-1.

• We can find out when we have reached v by looking at the
length of the edge labels (if these are stored together with the
labels).

2/7/2018 Chapter 7 94

aα

x

β
u

suf[y]

α

y
v

β

Suffix Trees
Up-Link-Down Strategy (continued):
• If there is no node w yet with path(w)=αβ, we create a new

node w at that location (by splitting an edge), so in any case
we have reached a node w at the end with path(w)=αβ.
Lemma 7.25 implies that in this case path(w)=head(i).

• Afterwards, we set suf[x] to w.

2/7/2018 Chapter 7 95

aα

x

β
u

suf[y]

α

y
v

β

wsuf[x]

Suffix Trees
Up-Link-Down Strategy (continued):
• If w already existed (so maybe path(w)≠head(i)), we follow the

links downwards from w till we reach the node z with path(z)
being the longest prefix of t[i…n]. Here, we have to look at the
full edge labels, which is why we call this phase slowsearch.

• If path(z)=head(i), then we simply insert a new edge with label
tail(i) into Ti-1 leading to a new leaf representing t[i…n].

2/7/2018 Chapter 7 96

aα

x

β
u

suf[y]

α

y
v

β

wsuf[x]

z

t[i…n]

Suffix Trees
Up-Link-Down Strategy (continued):
• We follow the links downwards from w till we reach the node z

with path(z) being the longest prefix of t[i…n].
• Otherwise, we insert a new node z´ with path(z´)=head(i)

below z by splitting an edge and insert a new edge leaving z´
with label tail(i) that leads to a new leaf representing t[i…n].

2/7/2018 Chapter 7 97

aα

x

β
u

suf[y]

α

y
v

β

wsuf[x]

z

t[i…n]

z´

Suffix Trees
Theorem 7.25: The algorithm of McCreight can construct the
suffix tree of a text t in time O(|t|).
Proof:
• The dominant parts of the runtime are the times needed for

fastfind and slowfind.
Runtime of fastfind:
• The time needed is upper bounded by

|father(head(i))|-|father(head(i-1))|+1,
where |v| is the length of the path(v).

• Hence, the overall runtime for
fastfind is at most

Σi=1
n (|father(head(i))|-|father(head(i-1))|+1)

≤ |father(head(n))| + n
= O(n)

2/7/2018 Chapter 7 98

aα

x
β

u

α

y
v

β

w

z

head(i-1)

head(i) z´

Suffix Trees
Theorem 7.25: The algorithm of McCreight can construct the
suffix tree of a text t in time O(|t|).
Proof:
• The dominant parts of the runtime are the times needed for

fastfind and slowfind.
Runtime of slowfind:
• The time needed is proportional to

|head(i)|-|head(i-1)|+1
• Hence, the overall runtime for

slowfind is proportional to
Σi=1

n (|head(i)|-|head(i-1)|+1)
≤ |father(head(n))| + n
= O(n)

2/7/2018 Chapter 7 99

aα

x
β

u

α

y
v

β

w

z

head(i-1)

head(i) z´

Suffix Trees
Remarks:
• Once we have built the suffix tree of t, we can

search for any string s in t in time O(|s|).
• We can further accelerate that (in certain

cases such as external memory) when
transforming t‘s suffix tree into a hashed
Patricia trie, which can be done in O(n) time.

• Then we only need O(log |s|) hash table
lookups to find out whether s is a substring of
t or not.

2/7/2018 Chapter 7 100

	Fundamental Algorithms��Chapter 7: String- and Patternmatching
	Overview
	Basic Notation
	Basic Notation
	Basic Notation
	Basic Notation
	A naive Algorithm
	A naive Algorithm
	A naive Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Karp-Rabin Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Knuth-Morris-Pratt Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Boyer-Moore Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Aho-Corasick Algorithm
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Extended-AC-Preprocessing
	Aho-Corasick Algorithm
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees
	Suffix Trees

