Fundamental Algorithms

Chapter 7: String- and Patternmatching

Christian Scheideler WS 2017

Overview

- Basic notation
- A naive algorithm
- Rabin-Karp algorithm
- Knuth-Morris-Pratt algorithm
- Boyer-Moore algorithm
- Aho-Corasick algorithm
- Suffix trees

- Alphabet Σ: finite set of symbols
 |Σ|: cardinality of Σ
- String s: finite sequence of symbols over ∑
 |s|: length of s
- ϵ : empty string, i.e., $|\epsilon|=0$
- Σⁿ: set of all strings over Σ of length n
 Σ⁰={ε}
- $\Sigma^* = \bigcup_{i \ge 0} \Sigma^i$: set of all strings over Σ
- $\Sigma^+=U_{i\geq 1}\Sigma^i$: set of all strings over Σ except ε

Definition 7.1: Let $s=s_1...s_n$ and $s'=s'_1...s'_m$ be strings over Σ .

- s´ is called a substring of s if there is an i≥1 with s´=s_is_{i+1}...s_{i+m-1}
- s' is called a prefix of s if s'=s₁s₂...s_m
- s' is called a suffix of s if s'=s_{n-m+1}s_{n-m+2}...s_n

There are two variants for the exact string matching problem. Given two strings s (the search string) and t (the text),

- 1. Determine if s is a substring of t, or
- 2. Determine all positions at which s is a substring of t

Sample problem: find avoctdfytvv in

kvjlixapejrbxeenpphkhthbkwyrwamnugzhppfxiyjyanhapfwbghx mshrlyujfjhrsovkvveylnbxnawavgizyvmfohigeabgksfnbkmffxjdf ffqbualeytqrphyrbjqdjqavctgxjifqgfgydhoiwhrvwqbxgrixydzdfss bpajnhopvlamhhfavoctdfytvvggikngkwzixgjtlxkozjlefilbrboiegwf gnbzsudssvqymnapbpqvlubdoyxkkwhcoudvtkmikansgsutdjyth apawlvliygjkmxorzeoafeoffbfxuhkzukeftnrfmocylculksedgrdsfe lvayjpgkrtedehwhrvvbbltdkctq

In general, |t|>>|s| (Google web search)

Many applications:

- word processors
- virus scanning
- text information retrieval
- digital libraries
- computational biology
- web search engines

A naive Algorithm

Input: text t, search string s (|t|=n, |s|=m)

```
Algorithm SimpleSearch:
for i:=1 to n-m+1 do
    j:=1
    while j≤m and s[j]=t[i+j-1] do
    j:=j+1
    if j>m then output i
```

A naive Algorithm

Search string s: xkhthbkwy

Text t: kvavixkpejrbxeenppxkhthbkwy

Is SimpleSearch always good?

Number of compared characters: n+3

A naive Algorithm

Search string s: 000000001

In the worst case, SimpleSearch has a bad runtime!

Number of compared characters: n⋅m

- Σ: alphabet of size q-1
- U: set of all q-ary numbers
- $f:\Sigma^* \to U$ arithmetization of strings over $\Sigma = \{c_1, \dots, c_{q-1}\}$ with the property that $-f(\varepsilon) = 0$ $-f(c_i) = i$ for all $i \in \{1, \dots, q-1\}$ $-f(s) = \Sigma_{i=0}^{n-1} f(s_i) \cdot q^i$ for all strings $s = s_0 \dots s_{n-1}$

For every $x \in U$ there is at most one string s with f(s)=x, so f is injective.

Idea: use hashing

x: arithmetization of some string

Example:

- use hash function h(x) = x mod 97
- search for 59265 in 31415926535897932384626433
- hash value of search string: h(59265) = 95
- Text hashes:

```
31415926535897932384626433
```

```
31415 = 84 \pmod{97}

14159 = 94 \pmod{97}

41592 = 76 \pmod{97}

15926 = 18 \pmod{97}

59265 = 95 \pmod{97} \rightarrow \text{match!}
```

Problem: hash uses m characters, so still running time n⋅m!

Additional idea: use hash of previous position to compute new hash

```
14159 = (31415 - 30000) \cdot 10 + 9

14159 mod 97 = (31415 \mod 97 - 30000 \mod 97) \cdot 10 + 9 \pmod 97

= (84 - 3.9) \cdot 10 + 9 \pmod 97

= 579 mod 97 = 94
```

precompute $9 = 10000 \pmod{97}$

Example:

- hash value of search string: 59265 mod 97 = 95
- Text hashes:
 31415926535897932384626433

```
31415 mod 97 = 84

14159 mod 97 = (84 - 3.9).10 + 9 \pmod{97} = 94

41592 mod 97 = (94 - 1.9).10 + 2 \pmod{97} = 76

15926 mod 97 = (76 - 4.9).10 + 6 \pmod{97} = 18
```

In general:

- consider a search string s of length m over some alphabet ∑ of size q-1
- let h(x) = x mod p for some prime p>q
- compare h(f(s)) with h(f(t_i...t_{m+i-1})) by computing y_i=h(f(t_i...t_{m+i-1})) in the following way:

```
\begin{aligned} y_1 &= f(t_1...t_m) \text{ mod p} \\ y_{i+1} &= (y_i - f(t_i) \cdot d) \cdot q + f(t_{i+m}) \text{ (mod p)} \quad \text{for all } i \geq m \\ \text{where } d = q^{|s|-1} \text{ mod p} \end{aligned}
```

whenever y_i = h(f(s)), output i

Problem: It can happen that $h(f(s))=h(f(t_i...t_{m+i-1}))$ but $s \neq t_i...t_{m+i-1}$. We call this a wrong matching.

Solution: As we will see, this is unlikely to happen if p is sufficiently large.

```
Karp-Rabin Algorithm:
   q:=|\Sigma|+1; m:=|s|; n:=|t|; d:=1
   x:=0 // for f(s) mod p
   y:=0 // for f(t_i...t_{m+i}) mod p
   for i:=1 to m-1 do
      d:=q·d mod p
   for i:=1 to m do
      x:=q\cdot x+f(s_i) \mod p
      y:=q\cdot y+f(t_i) \mod p
   for i:=1 to n-m+1 do
                                  to be on the safe side
      if x=y then
      if s=(t_i...t_{m+i-1}) then output if i \le n-m then
         y:=(y - f(t_i)\cdot d)\cdot q + f(t_{i+m}) \mod p
```

Analysis of the Karp-Rabin Algorithm:

Definition 7.2: For some natural number x let $\pi(x)$ be the number of prime numbers that are at most x.

Lemma 7.3 (Prime Number Theorem): For any $x \ge 29$, $0.922 \cdot x/(\ln x) \le \pi(x) \le 1.105 \cdot x/(\ln x)$.

Lemma 7.4: For $x \ge 29$, the product of all prime numbers that are at most x is larger than 2^x .

Corollary 7.5: If $x \ge 29$ and $y \le 2^x$, then y has less than $\pi(x)$ different prime divisors.

Proof:

- Suppose that y has k≥π(x) many different prime divisors q₁,...,q_k. Then
 2^x ≥ y ≥ q₁·q₂·...·q_k.
- But $q_1 \cdot q_2 \cdot ... \cdot q_k$ is at least as large as the product of the first k primes, which is at least as large as the product of the first $\pi(x)$ primes.
- Hence, Lemma 7.4 leads to a contradiction.

Lemma 7.6: Let s and t be strings over an alphabet of size q-1 with m·log q \geq 29, where |s|=m and | Σ |=q-1. Let P be an natural number. If p is a random prime number \leq P, then the probability of a wrong matching of the hashes of s and $t_i \dots t_{m+i-1}$ for some fixed i is at most $\pi(m \cdot \log q)/\pi(P)$.

Proof:

- Consider some fixed i with f(s)≠f(t_i...t_{m+i-1}).
- Certainly, $|f(s)-f(t_i...t_{m+i-1})| \le q^m = 2^{m \cdot \log q}$.
- Hence, Corollary 7.5 implies that $|f(s)-f(t_i...t_{m+i-1})|$ can have at most $\pi(m \cdot \log q)$ prime divisors.

Proof (continued):

- Since $f(s) \mod p = f(t_i...t_{m+i-1}) \mod p$, p divides $|f(s)-f(t_i...t_{m+i-1})|$.
- Hence, p is a prime divisor of this product.
- If p admits a wrong matching, then p must be one of at most $\pi(m \cdot log q)$ many prime divisors.
- Since p is randomly chosen out of $\pi(P)$, the probability that p admits a wrong matching is at most $\pi(m \cdot \log q)/\pi(P)$.

Theorem 7.7: Let s and t be strings with $m \cdot \log q \ge 29$ and let $P = m^2 \cdot \log q$, where |t| = n, |s| = m, and $|\Sigma| = q - 1$. If s is contained k times in t, then the expected runtime of Karp-Rabin is $O(n+k \cdot m)$.

Proof:

- R: set of positions in t at which s does not start.
- For each position i∈R we define a binary random variable X_i to be 1 if and only if there is a wrong matching at position i.
- Let N=m·log q. From Lemma 7.3 and Lemma 7.6 we know that

$$\mathsf{E}[\mathsf{X}_i] \leq \ \frac{\pi(\mathsf{N})}{\pi(\mathsf{P})} \leq \frac{1.105 \ \mathsf{N}/\mathsf{ln}(\mathsf{N})}{0.922 \ \mathsf{N} \cdot \mathsf{m}/\mathsf{ln}(\mathsf{N} \cdot \mathsf{m})} \leq \frac{1.2 \ \mathsf{ln}(\mathsf{N} \cdot \mathsf{m})}{\mathsf{m} \ \mathsf{ln}(\mathsf{N})} \leq \frac{2}{\mathsf{m}}$$

• Let $X=\Sigma_{i\in\mathbb{R}} X_i$. Due to the linearity of expectation,

$$E[X] = \Sigma_{i \in R} E[X_i] \le 2|R|/m$$

- Since a wrong matching consumes O(m) time and otherwise we just need time O(1) for a position i∈R, the expected total runtime is O(n) for R.
- For the k positions of t that contain s, a total runtime of $O(k \cdot m)$ is needed.
- Combining the runtimes results in the theorem.

Observation: on mismatch at the i-th symbol in the search string, we know the previous i-1 symbols in the text.

Idea: precompute what to do on a mismatch

Example:

- search string s: ababcab
- text: ababa....ababcab

ababcab (shift s by two for next possible match and continue scanning at current position a in the text)

In general:

- Suppose that $(s_1...s_i)=(t_1...t_i)$ but $s_{i+1}\neq t_{i+1}$.
- Then move to the first position d in t so that $(s_1...s_{i-d+1}) = (t_d...t_i)$ and continue with scanning the text at t_{i+1} .
- In this case, it certainly holds that $(s_1...s_{i-d+1}) = (s_d...s_i)$.
- We want to determine these jumps for all i in a preprocessing.

In general:

- Suppose that $(s_1...s_i)=(t_1...t_i)$ but $s_{i+1}\neq t_{i+1}$.
- Then move to the first position d in t so that $(s_1...s_{i-d+1}) = (t_d...t_i)$ and continue with scanning the text at t_{i+1} .
- In this case, it certainly holds that $(s_1...s_{i-d+1}) = (s_d...s_i)$.
- We want to determine these jumps for all i in a preprocessing.

Goal of the preprocessing:

- For every position i in s, find the minimal d>1 so that $(s_1...s_{i-d+1}) = (s_d...s_i)$. If there is no such d, we set it to i+1.
- Let the resulting d for that i be denoted d_i.
- The d_i's will be stored in an array so that they are quickly accessible to the KMP algorithm.

Preprocessing: For each i, find minimial d_i so that

Lemma 7.8: For every $i \in \{1,...,m-1\}$, $d_i \leq d_{i+1}$. Proof:

- Consider an arbitrary i.
- There is no $1 < d < d_i$ with $(s_d ... s_i) = (s_1 ... s_{i-d+1})$.
- Hence, there cannot be a $1 < d < d_i$ with $(s_d...s_{i+1}) = (s_1...s_{i-d+2})$, which implies that $d_i \le d_{i+1}$.

But how can we compute exact values of d_i?

Suppose that we have already computed d₁, ..., d_i and we want to compute d_{i+1}. The first candidate according to Lemma 7.8 would be d_i. For d_i it holds that (s₁...s_{i-di+1}) = (s_{di}...s_i). If also s_{(i+1)-di+1}=s_{i+1}, then (s₁...s_{(i+1)-di+1}) = (s_{di}...s_{i+1}) and we can set d_{i+1}=d_i.

• If $s_{(i+1)\cdot d_i+1} \neq s_{i+1}$, then we have not yet found a matching for s_{i+1} . Let $i'=i-d_i+1$. Then we have to find for $(s_1...s_{i'})$ the first d with $(s_1...s_{i'-d+1}) = (s_d...s_{i'})$. The first candidate for that is $d_{i'}$ since $(s_1...s_{i'-d_i'+1}) = (s_{d_i'}...s_{i'})$. If also $s_{(i'+1)\cdot d_i'+1} = s_{i+1}$, then we can set $d_{i+1} = d_i + (d_{i'}-1)$.

If s_{(i'+1)-d_{i'}+1} ≠ s_{i+1}, then we set i''=i'-d_{i'}+1 and we continue our search as for i'.

From these rules we can construct an efficient algorithm for computing the d_i-values:

```
Algorithm KMP-Preprocessing: d_0 := 2; d_1 := 2 \text{ // movement of s by 1} \delta := d_1 \text{ // } \delta : \text{ current candidate of } d_i for i:=2 to m do \text{while } \delta \leq i \text{ and } s_i \neq s_{i-\delta+1} \text{ do} \text{// } (s_1 ... s_{i-\delta}) = (s_\delta ... s_{i-1}) \text{ but } s_{i-\delta+1} \neq s_i \delta := \delta + (d_{i-\delta} - 1) d_i := \delta
```

Example: s=ababaca

i								
d _i	2	2	3	3	3	3	7	7

```
Algorithm KMP-Preprocessing: d_0 := 2; d_1 := 2 \text{ // movement of s by 1} \\ \delta := d_1 \text{ // } \delta : \text{ current candidate of } d_i \\ \text{for } i := 2 \text{ to m do} \\ \text{ while } \delta \leq i \text{ and } s_i \neq s_{i-\delta+1} \text{ do} \\ \text{ // } (s_1 \dots s_{i-\delta}) = (s_\delta \dots s_{i-1}) \text{ but } s_{i-\delta+1} \neq s_i \\ \delta := \delta + (d_{i-\delta} - 1) \\ d_i := \delta
```

Theorem 7.9: The runtime of the KMP-Preprocessing is O(m). Proof:

- Since all $d_i \ge 2$, δ will be increased in each while loop.
- Since the condition of the while loop cannot be satisfied again once δ>m, the while loop is executed at most m times over all iterations of the for-loop.
- The for-loop is executed at most m times as well.

```
Algorithm KMP:
   execute KMP-Preprocessing
   i:=1 // current position in t
   j:=1 // current starting position of s in t
   while i≤n do
      if j \le i and t_i \ne s_{i-j+1} then
        j:=j+d_{i-i}-1
      else
         if i-j+1=m then // match found
            output j
           j:=j+d_m-1
                                      t_i = s_{i-j+1}?
           S:
                                        i-j+1
```

Theorem 7.10: The runtime of the KMP algorithm is O(n).

Proof:

- In each while-loop, i or j is increased.
- Since i and j are bounded above by n, the theorem follows.

Can we be faster than linear time?

Further improvement of KMP-Preprocessing:

Original goal of the preprocessing:

• For every position i in s, find the minimal d>1 so that $(s_1...s_{i-d+1}) = (s_d...s_i)$. If there is no such d, we set it to i+1.

Improved goal of the preprocessing:

For every position i in s, find the minimal d'>1 so that
 (s₁...s_{i-d'+1}) = (s_{d'}...s_i) and s_{i-d'+2}≠s_{i+1}. If there is no such d', we set it to i+2.


```
Algorithm KMP-Preprocessing2:
     d_0:=2; d_1:=2 // movement of s by 1
                     // current shifting position of s
     for i:=2 to m do
         while \delta \leq i and s_i \neq s_{i-\delta+1} do
             // (s_1...s_{i-\delta}) = (s_{\delta}...s_{i-1}) but s_{i-\delta+1} \neq s_i
              \delta := \delta + d_{i-\delta} - 1
         d_i := \delta
     // computation of d'-values
     d_0:=2
     for i:=1 to m-1 do
         if d<sub>i</sub>>i then // no matching parts
               if s<sub>1</sub> ≠ s<sub>i+1</sub> then d'<sub>i</sub>:=d<sub>i</sub> else d'<sub>i</sub>:=d<sub>i</sub>+1
                                                                                                      S₁
         else
              if d<sub>i+1</sub>>d<sub>i</sub> then // mismatch at i+1
                                                                                                          i+1
                                                                             d<sub>i</sub>
              else
                 i':=i - d_i + 1
                                                                                                       (i+1)-d_i+1
                                                                                            i-d_i+1
     d'_{i}:=d_{i}+d'_{i}-1

d'_{m}:=d_{m} // all symbols are matching
                                                                                                                         \neq
                                                                                     1 i'-d'<sub>i'</sub>+1
                                                                                                     (i'+1)-d'_{i'}+1
                                                                                                                                   32
2/7/2018
                                                            Chapter 7
```

Example: s=ababaca

KMP-Preprocessing:

i	0	1	2	3	4	5	6	7
d _i	2	2	3	3	3	3	7	7

KMP-Preprocessing2:

i								
ďi	2	2	4	4	6	3	8	7

Better, but still not faster than linear time.

Boyer-Moore Algorithm

Idea: compare search string s with a text t from right to left.

```
Example: s=OHO, t=ALCOHOLIC

ALCOHOLIC

OHO ← mismatch at first letter, no C in OHO

+3 OHO ← match

+2 OHO ← mismatch at first letter,

no I in OHO, so we are done
```

A runtime of O(n/m) is possible.

Boyer-Moore Algorithm

Naive Boyer-Moore Algorithm doesn't jump forward quickly enough, but there are various ways to accelerate that.

Boyer-Moore Algorithm

Occurance shift preprocessing:

For every c∈Σ, compute
 | last[c]:=max{ j∈{1,...,m} | s_j=c }
 | If there is no c in s, set last[c]:=0.
 Can certainly be done in O(m) time.

Boyer-Moore algorithm with occurance shift:

```
 \begin{array}{l} \text{i:=1} \\ \text{while } i \leq n\text{-m+1 do} \\ j := m \text{ // } (s_1 \ldots s_m) = (t_i \ldots t_{i+m-1})? \\ \text{while } j \geq 1 \text{ and } s_j = t_{i+j-1} \text{ do} \\ j := j-1 \\ \text{if } j = 0 \text{ then output } i \text{ ; } i := i+1 \text{ // match found} \\ \text{else } i := i + max\{1, j\text{-last}[t_{i+i-1}]\} \\ \end{array}
```

Boyer-Moore algorithm with occurance shift:

```
i:=1
while i≤n-m+1 do
   j:=m // (s_1...s_m)=(t_i...t_{i+m-1})?
while j\ge 1 and s_i=t_{i+j-1} do
                                                 Or better: i:=i+(d_m-1)
   if j=0 then output i; i:=i+1 // match found
            else i:=i+max\{1,j-last[t_{i+i-1}]\}
                                  i+j-1
                                          j+1
                                                 m
                   last[t_{i+j-1}]
```

Boyer-Moore algorithm with occurance shift:

```
 \begin{array}{l} \text{i:=1} \\ \text{while } i \leq n\text{-}m\text{+}1 \text{ do} \\ j := m \text{ // } (s_1 \ldots s_m) = (t_i \ldots t_{i+m-1})? \\ \text{while } j \geq 1 \text{ and } s_j = t_{i+j-1} \text{ do} \\ j := j-1 \\ \text{if } j = 0 \text{ then output } i \text{ ; } i := i+1 \text{ // match found} \\ \text{else } i := i + max\{1, j\text{-}last[t_{i+j-1}]\} \\ \end{array}
```

In practice, this is already much faster, but we can do better with the following suffix rule.

1. Compute the minimal $d_1 \in \{1, \ldots j\}$ with $s_{j-d_1+1} \neq s_j$ (BM2) and $(s_{j-d_1+2} \ldots s_{m-d_1+1}) = (s_{j+1} \ldots s_m)$ (BM1). If there is no such d_1 , we set d_1 to m+1.

2. Compute the minimal $d_2 \in \{j+1,...m\}$ with $(s_1...s_{m-d_2+1}) = (s_{d_2}...s_m)$. If there is no such d_2 , we set d_2 to m+1.

The suffix rule allows us to increase i by $d=min(d_1,d_2)$ without missing a matching. For all $0 \le j \le m$ let $D_j=d$ for the d above. With these D_j -values we can run the improved Boyer-Moore Algorithm.

```
Algorithm Boyer-Moore: execute BM-Preprocessing to obtain D i:=1 while i \le n-m+1 do j:=m while j \ge 1 and s_j = t_{i+j-1} do j:=j-1 if j=0 then output j // match found i:=i+D_i-1 // only change compared to naive BM
```

Example: s=abaababaabaab

j	0	1	2	3	4	5	6	7	8	9	10	11	12	13
Sj		а	b	а	а	b	а	b	а	а	b	а	а	b
\mathbf{D}_{j}	8	8	8	8	8	8	8	8	3	11	11	6	13	1

It is not so easy to compute that efficiently...

First, we consider the problem of implementing rule 2 of the suffix rule:

• Compute the minimal $d_2 \in \{j+1,...m\}$ with $(s_1...s_{m-d_2+1}) = (s_{d_2}...s_m)$. If there is no such d_2 , we set d_2 to m+1. Let us call this $d_2 d_{i,2}$.

- Let d₀,...,d_m be the values from the KMP preprocessing.
- It is easy to see that d_{0,2}=d_m.
- For j>0, we keep shifting s until $d_{i,2}>j$.

- Let d₀,...,d_m be the values from the KMP preprocessing.
- It is easy to see that d_{0,2}=d_m. For j>0, we keep shifting s until d_{i,2}>j.

```
j+1
                                                              m
                                     d_{i}
                                                        i-d_i+1
d_{0,2}:=d_m

\delta:=d_m, i:=m-\delta+1

for j:=1 to m do
                             // \delta: shift candidate for d_{i,2}
    if j \ge \delta then // j too large: one more shift
         \delta := \delta + (d_i - 1)
         i:=i-d_i+1
     d_{i,2}:=\delta
```

```
\begin{array}{l} d_{0,2} \! := \! d_m \\ \delta \! := \! d_m; \ i \! := \! m \! - \! \delta \! + \! 1 & \text{$/$} \delta \! : \text{ shift candidate for } d_{j,2} \\ \text{for } j \! := \! 1 \text{ to m do} \\ \text{if } j \! \geq \! \delta \text{ then } \text{$//$} j \text{ too large: one more shift} \\ \delta \! := \! \delta \! + \! (d_i \! - \! 1) \\ \text{$i \! := \! i \! - \! d_i \! + \! 1} \\ d_{j,2} \! := \! \delta \end{array}
```

Example: s=ababaca

i/j								
d _i	2	2	3	3	3	3	7	7
d _{j,2}	7	7	7	7	7	7	7	8

Next, we want to implement rule 1 of the suffix rule:

Remember improved KMP-preprocessing:

For every position i in s, find the minimal d'>1 so that
 (s₁...s_{i-d'+1}) = (s_{d'}...s_i) and s_{i-d'+2} ≠ s_{i+1}. If there is no such d', we set it to i+2.

 Let s' be the reverse s. Then we obtain the following equivalent problem for s':

Substituting j by m-j and re-defining d_{i,1}:=d_{m-i,1} gives us:

So we have:

In the KMP-Preprocessing2 we solve:

So for each j we can set d_{j,1}:=min{ d´_i | i∈{1,...,m-1}, i-d´_i+1=j }. For all other j´s there is no solution, so we use the default value given in rule 1.

```
So for the original j we use the rule:
   d_{i,1} := \min\{ d'_i \mid i \in \{1, ..., m-1\}, i-d'_i+1=j \}.
If no such i exists, we set d_{i,1}:=m+1.
Algorithm for rule 1:
   compute d'_1,...,d'_{m-1} for s' for j:=0 to m do
   d_{j,1}:=m+1
for i:=1 to m-1 do
       j:=m-(i-d'_i+1)
       if j≤m`and d'i<d<sub>j,1</sub> then
          d_{i,1}:=d'_{i}
```

```
// computation of d-values for s' d_0:=2; d_1:=2 // movement of s by 1 \delta:=d_1 // current shift position of s for i:=2 to m do while \delta \leq i and s_i \neq s_{i-\delta+1} do // (s_1 \dots s_{i-\delta}) = (s_\delta \dots s_{i-1}) but s_{i-\delta+1} \neq s_i \delta:=\delta + d_{i-\delta} -1 d_i:=\delta
```

```
// computation of d´-values for s´ d_0':=2 for i:=1 to m-1 do if d_i>i then // no matching parts if s_1\neq s_{i+1} then d_i':=d_i else d_i':=d_i+1 else if d_{i+1}>d_i then // mismatch at i+1 d_i':=d_i else i´:=i - d_i+1 d_i':=d_i+1 all symbols are matching
```

Example: s=ababaca, so s´=acababa

i	0	1	2	3	4	5	6	7
d _i	2	2	3	3	5	5	7	7
ďi	2	2	4	3	6	5	8	7

```
compute d_1, \ldots, d_{m-1} for s' for j:=0 to m do d_{j,1}:=m+1 for i:=1 to m-1 do d_{j,1}:=m-(i-d_j'+1) for i:=m-(i-d_j'+1) for i:=m-(i-
```

Example: s=ababaca, so s'=acababa

i/j	0	1	2	3	4	5	6	7
ďį	2	2	4	3	6	5	8	7
d _{j,1}	8	8	8	8	8	8	3	2

Example: s=ababaca. Remember that $D_j=\min\{d_{j,1},d_{j,2}\}$.

j	0	1	2	3	4	5	6	7
d _{j,1}	8	8	8	8	8	8	3	2
d _{j,2}	7	7	7	7	7	7	7	8
D _j	7	7	7	7	7	7	3	2

Hence, most of the time there are very large jumps.

One can show the following result:

Theorem 7.11: Let k be the number of times the search string occurs in the text. Then the Boyer-Moore Algorithm has a runtime of O(n+k⋅m).

The proof is very complex and omitted here.

Remarks:

- If (BM2) is dropped, then the runtime increases to O(n·m).
- In practice, the Boyer-Moore Algorithm has a runtime of O(n/m).

Remarks:

 To reduce the runtime from O(n+km) to O(n+m), we can use the fact that whenever s has been found in t, we only have to check s_i=t_{i+i-1} for j∈{m-d_m+2,...,m}.

• To further reduce the runtime, we can combine the suffix rule with the occurance shift rule by setting

$$i:=i+max\{ D_{i}-1, j-last[t_{i+i-1}]\}.$$

Now we have the following situation: search in a text t for all positions in which a search string in $S=\{s_1,...,s_k\}$ starts.

In the following let $m_i = |s_i|$ and $m = \sum_{i=1}^k m_i$.

First idea: run the KMP algorithm in parallel for all search strings.

Runtime: O(m+k·n)

preprocessing main algorithm

Better idea: instead of tables of d_i-values, use a finite automaton.

Example: let s=abaaba

Table of d_i-values:

i	0	1	2	3	4	5	6
d _i	2	2	3	3	4	4	4

Finite automaton:

Example: let s=abaaba

Table of d_i-values:

i	0	1	2	3	4	5	6	
d _i	2	2	3	3	4	4	4	

Example: let s=abaaba

This is called an AC-automaton.

Definition 7.12: An AC-automaton consists of:

- Q: a finite set of states
- $\Gamma = \Sigma \cup \{\text{fail}\}\$: a finite alphabet (with input alphabet Σ)
- $\delta: \mathbb{Q} \times \Gamma \rightarrow \mathbb{Q}$: a transition function
- q₀: an initial state and
- F⊆Q: a set of accepting states

Example: let s=abaaba

AC-automaton for $s \in \Sigma^*$ with |s|=m:

- Q= $\{-1,0,1...,m\}$, q₀=0, and F= $\{m\}$
- $\Gamma = \Sigma \cup \{fail\}$
- For all $i \in \{0, ..., m-1\}$, $\delta(i, s_{i+1}) = i+1$
- For all $i \in \{0,...,m\}$, $\delta(i,fail)=i-d_i+1$ The fail-transition is used if a symbol is read that does not have a regular transition.

AC preprocessing for a single search string s:

```
Algorithm AC-Preprocessing:  \begin{array}{lll} d_0{:=}2; \ d_1{:=}2 \ // \ movement \ of \ s \ by \ 1 \\ \delta{:=}d_1 \ // \ \delta{:} \ current \ candidate \ of \ d_i \\ \text{for } i{:=}2 \ to \ m \ do \\ \text{while } \delta{\leq}i \ and \ s_i{\neq}s_{i{-}\delta{+}1} \ do \\ \text{// } (s_1{\dots}s_{i{-}\delta}){=}(s_{\delta}{\dots}s_{i{-}1}) \ but \ s_{i{-}\delta{+}1}{\neq}s_i \\ \delta{:=}\delta{+}(d_{i{-}\delta}\ -1) \\ d_i{:=}\delta \\ \text{// } compute \ f_0, \dots, f_m \ for \ fail \ transitions \\ \text{for } i{:=}0 \ to \ m \ do \ f_i{:=}i{-}d_i{+}1 \\ \end{array}
```

Lemma 7.13: The AC preprocessing has a runtime of O(m). Proof: follows from KMP proprocessing.

Aho-Corasick Algorithm for one search string:

```
execute AC-Preprocessing
j:=0 // starting position in automaton
for i:=1 to n do
   while (j ≠-1 and t<sub>i</sub> ≠ s<sub>j+1</sub>) do
        j:=f<sub>j</sub>
        j:=j+1
   if j=m then output i-m+1
```

Theorem 7.14: The AC algorithm for a single search string is correct and runs in time O(n).

Proof: follows from analysis of KMP algorithm

AC automaton for a set S of multiple search strings:

- Q={ $w \in \Sigma^*$ | w is a prefix of an $s \in S$ } \cup {fail} and $q_0 = \varepsilon$
- $F=F_1 \cup F_2$ where
 - $-F_1=S$ and
 - $F_2 = \{ w \in \Sigma^* \mid \exists s \in S : s \text{ is a suffix of } w \}$
- For all $w \in \mathbb{Q}$ and $a \in \Sigma$ it holds:
 - δ(w,a) = w∘a whenever w∘a∈Q, and otherwise
 - δ (w,fail)=w' for the w'∈Q representing the largest suffix of w. For w=ε, δ (w,fail)=fail (where "fail" represents the state that was previously "-1").

Aho-Corasick Algorithm for a set S of search strings:

- m: sum of lengths of all s∈S
- f_w : state reached by $\delta(w,fail)$
- S_w : set of all $s \in S$ that are a suffix of w

```
execute Extended-AC-Preprocessing w:=\epsilon // starting position in AC automaton for i:=1 to n do while (w \neq fail and \delta(w,t_i) is not defined) do w:=f_w if w=fail then w:=\epsilon else w:=w\circ t_i if w\in F then output (i,S<sub>w</sub>)
```

Theorem 7.15: The AC algorithm is correct and has a runtime of O(n+m).

Proof: it remains to specify Extended-AC-Preprocessing

- The AC automaton for S can be constructed in three phases:
- Phase I: construct the prefix tree of S with the regular transitions and mark the states belonging to F₁
- Phase II: compute the fail transitions in breadth-first-search order starting with state ε
- Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase I: construct the prefix tree of S with the regular transitions and mark the states belonging to F₁

The AC automaton for S can be constructed in three phases:

Phase I: construct the prefix tree of S with the regular transitions and mark the states belonging to F₁

Algorithm for Phase I:

Build a trie for S and set F:=S

Runtime: O(m)

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases:

Phase II: compute the fail transitions in breadth-first-search order starting with state ε

Algorithm for Phase II: similar to KMP preprocessing

• Consider a state of the AC automaton representing $s_1...s_{i+1}$. Start with fail transition of $s_1...s_i$ for largest potential suffix for fail transition of $s_1...s_{i+1}$.

Phase II:

- Initialization:
 - f_ε:=failf_a:=ε for all a∈Σ
- For all w∈Q\{ε} in BFS order:
 - f_w:=f_{pred(w)} // pred(w): w without last symbol
 - while (f_w≠fail and δ(f_w,last(w)) undefined) do
 // last(w): last symbol of w
 f_w:=f_{fw}
 - if f_w =fail then f_a := ϵ else f_w := $\delta(f_w$,last(w))

Lemma 7.16: The Extended-AC-Preprocessing needs at most O(m) time to compute the AC automaton.

Proof: Exercise.

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

76

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}

2/7/2018

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

The AC automaton for S can be constructed in three phases: Phase III: compute the states belonging to F_2 and the sets S_w for all $w \in F_1 \cup F_2$ in breadth-first-search order starting with state ε

Algorithm of Phase III:

- For all w∈Q\F do S_w:={} // at this point we still have F=F₁
- For all $w \in F$ do $S_w := \{w\}$
- For all w∈Q\{ε} in BFS order:
 - $S_w := S_w \cup S_{f_w}$
 - if $S_w \neq \{\}$ then $F := F \cup \{w\}$

Runtime: O(m) (when storing S_w 's implicitly via links)

Aho-Corasick Algorithm

Aho-Corasick Algorithm for regular expressions (basic idea):

- Build non-deterministic finite automaton (NFA) for that regular expression with starting state q₀.
- Add transitions $\delta(q_0,c)=q_0$ for every $c\in\Sigma$ to take into account that the string s matching the regular expression in the given text t could start at any point in t.
- Convert the NFA into a deterministic automaton (DFA) using the power set method, if the state-space of the DFA does not get too large.

Theorem 7.17: With an NFA of size m for the regular expression R, it can be checked in $O(n \cdot m)$ time whether there is a substring s in t with $s \in R$. With a DFA, the runtime can be reduced to O(n), but the time needed to set up the DFA might be around $O(2^m)$.

- Given a text t, we now consider the problem of preprocessing t so that we can check for any search string s of length m in O(m) time whether s is a substring of t.
- Solution: suffix tree of t

Definition 7.18: Let $t=t_1...t_{n-1}$ \$ be a text with special end symbol \$.

- t[i..n]=t_i...t_n denotes the suffix of t starting with t_i.
- The suffix trie ST(t) of t is the trie resulting from the strings t[1..n],t[2..n],...,t[n..n] (see Section 3). Every leaf of ST(t) stores i if and only if it represents t[i..n].

Example: t=abcabc\$.

Remarks:

- If we want to check whether s is a substring of t, we simply follow the unique path in ST(t) whose edge labels form s. If this path exists, s is indeed a substring of t, and otherwise this is not the case. Certainly, this checking can be done in O(|s|) time.
- If we additionally want to know all positions at which s starts in t, we need to determine the set of all i∈{1,..,n} stored in the leaves reachable from the trie node representing s in ST(t).

Problem: ST(t) may have $\Theta(n^2)$ many nodes, where n is the length of t. This is the case, for example, for $t=a^mb^m$ \$.

Solution: Condense ST(t) to the Patricia trie of ST(t).

Definition 7.19: The suffix tree PT(t) of t is the Patricia trie of ST(t).

Example: t=abcabc\$.

Lemma 7.20: For any text $t=t_1...t_{n-1}$ \$, PT(t) consists of just O(n) nodes. Proof: follows from the properties of Patricia tries.

For every node v in PT(t) define

- count(v): number of leaves below it,
- first(v): minimum index i stored below it, and
- last(v): maximum index i stored below it.

Suppose that every node v in PT(t) stores count(v), first(v), and last(v).

Theorem 7.21: For every search string s, the following queries can be answered in O(|s|) time:

- Find the first occurence of s in t.
- Find the last occurrence of s in t.
- Find the number of times s occurs in t.

Problem: How to construct PT(t) efficiently?

Naive approach:

```
T_0:= suffix tree just consisting of the root for i:=1 to n do
T_i:= insert(T_{i-1},t[i..n])
```

Runtime of insert $(T_{i-1},t[i..n])$:

- Standard approach of traversing the edges of T_{i-1} from the root: time O(n) (since depth of T_{i-1} can be proportional to i and up to n-i characters may have to be checked to find insertion point)
- When using the hashed Patricia trie with msd-nodes and ignoring work for individual character comparisons: runtime is O(log n)

In any case, the best achievable bound seems to be $O(n \log n)$ for constructing PT(t).

The algorithm of McCreight can construct PT(t) in time O(n) (including the time for character comparisons). To understand that algorithm we need some notation.

Definition 7.22:

- For any node v in a suffix tree T let path(v) be the concatenation of edge labels from the root of T down to v.
- For any string $\alpha \in \Sigma^*$, we say that $\alpha \in T$ if there is a node v in T with α being a prefix of path(v).
- For any i∈{1,...,n}, let head(i) be the longest prefix of t[i..n] that is a prefix of some t[j..n] with j<i. Let tail(i) be t[i..n] without head(i).

Note that head(i) is the place where the new node v with path(v)=t[i..n] needs to be inserted into T_{i-1} .

If we can find head(i) efficiently, we can quickly insert t[i..n]. For that we need so-called suffix links.

Lemma 7.23: Consider any $a \in \Sigma$ and $\beta \in \Sigma^*$, and let T_i be defined as in the naive suffix tree algorithm. If $head(i-1)=a\beta$ then β is a prefix of head(i).

Proof:

- Let head(i-1)=aβ.
- Then there is a j<i with aβ being a prefix of t[j-1..n].
- Hence, β is a prefix of t[j..n] and t[i..n].
- Therefore, β is a prefix of head(i).

Definition 7.24: Let u and v be two inner nodes of a suffix tree T. Then suf[u]=v if and only if there is a $c \in \Sigma$ with $path(u)=c \circ path(v)$. suf[u] is called the suffix link of u.

Lemma 7.25: If u is an inner node in T_{i-1} then suf[u] is an inner node in T_i .

Lemma 7.25: If u is an inner node in T_{i-1} then suf[u] is an inner node in T_i .

Proof:

- Suppose that u is an inner node in T_{i-1}.
- Then there are $j_1, j_2 < i$ with path(u) being the longest common prefix of $t[j_1..n]$ and $t[j_2..n]$.
- But then path(suf[u]) is the longest common prefix of t[j₁+1..n] and t[j₂+1..n], which implies that suf[u] is an inner node in T_i.

Recall the naive algorithm:

```
T_0:= suffix tree just consisting of the root for i:=1 to n do
T_i:=insert(T_{i-1},t[i..n])
```

This is also the basic framework for the algorithm of McCreight, but the insertion of t[i..n] into T_{i-1} is performed differently from the standard insert:

- At the beginning of the i-th iteration, we assume that all nodes except for the node v with path(v)=head(i-1) have a suffix link.
- Given that the algorithm knows head(i-1) at the beginning of the i-th iteration, it will make use of the suffix links to efficiently locate head(i), which will allow it to insert t[i..n].
- This strategy is called Up-Link-Down.

Up-Link-Down Strategy:

- Let x be the node in T_{i-1} with path(x)=head(i-1) and let y be the father of x. Suppose that head(i-1)=aαβ with a∈Σ and α,β∈Σ*, as shown in the figure.
- According to Lemma 7.23, we know that $\alpha\beta \in T_{i-1}$ and that head(i)= $\alpha\beta\gamma$ for some $\gamma \in \Sigma^*$.
- Since x does not have a suffix link, we go to y and use the suffix link from there. This leads to a node u with path(u)= α .

Up-Link-Down Strategy (continued):

- We follow the links downwards from u till we reach the node v with path(v) being the longest prefix of $\alpha\beta$. Up to that node we only have to look at the first character of each edge (fastfind) since we know that $\alpha\beta\in T_{i-1}$.
- We can find out when we have reached v by looking at the length of the edge labels (if these are stored together with the labels).

Up-Link-Down Strategy (continued):

- If there is no node w yet with $path(w)=\alpha\beta$, we create a new node w at that location (by splitting an edge), so in any case we have reached a node w at the end with $path(w)=\alpha\beta$. Lemma 7.25 implies that in this case path(w)=head(i).
- Afterwards, we set suf[x] to w.

Up-Link-Down Strategy (continued):

2/7/2018

- If w already existed (so maybe path(w)≠head(i)), we follow the links downwards from w till we reach the node z with path(z) being the longest prefix of t[i...n]. Here, we have to look at the full edge labels, which is why we call this phase slowsearch.
- If path(z)=head(i), then we simply insert a new edge with label tail(i) into T_{i-1} leading to a new leaf representing t[i...n].

96

Up-Link-Down Strategy (continued):

- We follow the links downwards from w till we reach the node z with path(z) being the longest prefix of t[i...n].
- Otherwise, we insert a new node z´ with path(z´)=head(i) below z by splitting an edge and insert a new edge leaving z´ with label tail(i) that leads to a new leaf representing t[i...n].

2/7/2018

Theorem 7.25: The algorithm of McCreight can construct the suffix tree of a text t in time O(|t|).

Proof:

 The dominant parts of the runtime are the times needed for fastfind and slowfind.

 $a\alpha$

head(i-1)

head(

Runtime of fastfind:

- The time needed is upper bounded by |father(head(i))|-|father(head(i-1))|+1, where |v| is the length of the path(v).
- Hence, the overall runtime for fastfind is at most

```
\Sigma_{i=1}^{n} (|father(head(i))|-|father(head(i-1))|+1) 
 \leq |father(head(n))| + n
```

= O(n)

Theorem 7.25: The algorithm of McCreight can construct the suffix tree of a text t in time O(|t|).

Proof:

 The dominant parts of the runtime are the times needed for fastfind and slowfind.

Runtime of slowfind:

- The time needed is proportional to |head(i)|-|head(i-1)|+1
- Hence, the overall runtime for slowfind is proportional to

```
\Sigma_{i=1}^{n} (|head(i)|-|head(i-1)|+1)

\leq |father(head(n))| + n

= O(n)
```


Remarks:

- Once we have built the suffix tree of t, we can search for any string s in t in time O(|s|).
- We can further accelerate that (in certain cases such as external memory) when transforming t's suffix tree into a hashed Patricia trie, which can be done in O(n) time.
- Then we only need O(log |s|) hash table lookups to find out whether s is a substring of t or not.