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Overview

• Basic notation
• A naive algorithm
• Rabin-Karp algorithm
• Knuth-Morris-Pratt algorithm
• Boyer-Moore algorithm
• Aho-Corasick algorithm
• Suffix trees
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Basic Notation
• Alphabet Σ: finite set of symbols

|Σ|: cardinality of Σ
• String s: finite sequence of symbols over Σ

|s|: length of s
• ε: empty string, i.e., |ε|=0
• Σn: set of all strings over Σ of length n

Σ0={ε}
• Σ*=Ui≥0 Σi: set of all strings over Σ
• Σ+=Ui≥1 Σi: set of all strings over Σ except ε
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Basic Notation
Definition 7.1: Let s=s1…sn and s´=s´1…s´m be strings 

over Σ.
• s´ is called a substring of s if there is an i≥1 with 

s´=sisi+1…si+m-1
• s´ is called a prefix of s if s´=s1s2…sm
• s´ is called a suffix of s if s´=sn-m+1sn-m+2…sn

There are two variants for the exact string matching 
problem. Given two strings s (the search string) and t 
(the text),
1. Determine if s is a substring of t, or
2. Determine all positions at which s is a substring of t
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Basic Notation
Sample problem: find avoctdfytvv in

kvjlixapejrbxeenpphkhthbkwyrwamnugzhppfxiyjyanhapfwbghx
mshrlyujfjhrsovkvveylnbxnawavgizyvmfohigeabgksfnbkmffxjdf
ffqbualeytqrphyrbjqdjqavctgxjifqgfgydhoiwhrvwqbxgrixydzdfss
bpajnhopvlamhhfavoctdfytvvggikngkwzixgjtlxkozjlefilbrboiegwf
gnbzsudssvqymnapbpqvlubdoyxkkwhcoudvtkmikansgsutdjyth
apawlvliygjkmxorzeoafeoffbfxuhkzukeftnrfmocylculksedgrdsfe
Ivayjpgkrtedehwhrvvbbltdkctq

In general, |t|>>|s| (Google web search)

2/7/2018 Chapter 7 5



Basic Notation

Many applications:
• word processors
• virus scanning
• text information retrieval
• digital libraries
• computational biology
• web search engines
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A naive Algorithm

Input: text t, search string s (|t|=n, |s|=m)

Algorithm SimpleSearch:
for i:=1 to n-m+1 do

j:=1
while j≤m and s[j]=t[i+j-1] do

j:=j+1
if j>m then output i
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A naive Algorithm
Search string s: xkhthbkwy
Text t: kvavixkpejrbxeenppxkhthbkwy

Number of compared characters: n+3
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- - - - xk-
- - - - - - x-

- - - - - xkhthbkwy

Is SimpleSearch 
always good?



A naive Algorithm
Search string s: 000000001
Text t: 000000000000000000000001

Number of compared characters: n⋅m
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00000000-
00000000-
00000000-
00000000-
00000000-
00000000-

…

In the worst case, 
SimpleSearch has 

a bad runtime!



Karp-Rabin Algorithm
• Σ: alphabet of size q-1
• U: set of all q-ary numbers
• f:Σ*→U arithmetization of strings over  

Σ={c1,…,cq-1} with the property that
– f(ε) = 0
– f(ci) = i for all i∈{1,…,q-1}
– f(s) = Σi=0

n-1 f(si)⋅qi for all strings s=s0…sn-1

For every x∈U there is at most one string s with 
f(s)=x, so f is injective.
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Karp-Rabin Algorithm
Idea: use hashing

Example: 
• use hash function h(x) = x mod 97
• search for 59265 in 31415926535897932384626433

• hash value of search string: h(59265) = 95
• Text hashes:

31415926535897932384626433

31415 = 84 (mod 97)
14159 = 94 (mod 97)
41592 = 76 (mod 97)
15926 = 18 (mod 97)

59265 = 95 (mod 97)   → match!

Problem: hash uses m characters, so still running time n⋅m!
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x: arithmetization of some string



Karp-Rabin Algorithm
Additional idea: use hash of previous position to compute new hash

14159              = (31415              – 30000             )⋅10 + 9
14159 mod 97 = (31415 mod 97 – 30000 mod 97)⋅10 + 9 (mod 97)

= (          84          – 3⋅9                 )⋅10 + 9 (mod 97)
=  579  mod  97  =  94

Example: 
• hash value of search string: 59265 mod 97 = 95
• Text hashes:

31415926535897932384626433

31415 mod 97 = 84
14159 mod 97 = (84 – 3⋅9)⋅10 + 9 (mod 97) = 94
41592 mod 97 = (94 – 1⋅9)⋅10 + 2 (mod 97) = 76
15926 mod 97 = (76 – 4⋅9)⋅10 + 6 (mod 97) = 18
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precompute 9 = 10000 (mod 97)



Karp-Rabin Algorithm
In general:
• consider a search string s of length m over some alphabet Σ of size 

q-1
• let h(x) = x mod p for some prime p>q
• compare h(f(s)) with h(f(ti…tm+i-1)) by computing yi=h(f(ti…tm+i-1)) in the 

following way:
y1 = f(t1…tm) mod p
yi+1 = (yi - f(ti)⋅d)⋅q + f(ti+m) (mod p)   for all i≥m

where d=q|s|-1 mod p
• whenever yi = h(f(s)), output i

Problem: It can happen that h(f(s))=h(f(ti…tm+i-1)) but s≠ti…tm+i-1. We call 
this a wrong matching.

Solution: As we will see, this is unlikely to happen if p is sufficiently large.
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Karp-Rabin Algorithm
Karp-Rabin Algorithm:

q:=|Σ|+1; m:=|s|; n:=|t|; d:=1
x:=0    // for f(s) mod p
y:=0    // for f(ti…tm+i) mod p
for i:=1 to m-1 do

d:=q⋅d mod p
for i:=1 to m do

x:=q⋅x+f(si) mod p
y:=q⋅y+f(ti) mod p

for i:=1 to n-m+1 do
if x=y then

if s=(ti…tm+i-1) then output i
if i≤n-m then

y:=(y - f(ti)⋅d)⋅q + f(ti+m) mod p 
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Karp-Rabin Algorithm
Analysis of the Karp-Rabin Algorithm:

Definition 7.2: For some natural number x let
π(x) be the number of prime numbers that are 
at most x.

Lemma 7.3 (Prime Number Theorem): For any 
x≥29, 0.922⋅x/(ln x) ≤ π(x) ≤ 1.105⋅x/(ln x).

Lemma 7.4: For x≥29, the product of all prime 
numbers that are at most x is larger than 2x.
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Karp-Rabin Algorithm
Corollary 7.5: If x≥29 and y≤2x, then y has less 

than π(x) different prime divisors.
Proof:
• Suppose that y has k≥π(x) many different prime 

divisors q1,…,qk. Then 
2x ≥ y ≥ q1⋅q2⋅…⋅qk. 

• But q1⋅q2⋅…⋅qk is at least as large as the product 
of the first k primes, which is at least as large as 
the product of the first π(x) primes.

• Hence, Lemma 7.4 leads to a contradiction.
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Karp-Rabin Algorithm
Lemma 7.6: Let s and t be strings over an alphabet 

of size q-1 with m⋅log q≥29, where |s|=m and 
|Σ|=q-1. Let P be an natural number. If p is a 
random prime number ≤P, then the probability of 
a wrong matching of the hashes of s and ti…tm+i-1
for some fixed i is at most π(m⋅log q)/π(P).

Proof:
• Consider some fixed i with f(s)≠f(ti…tm+i-1).
• Certainly, |f(s)-f(ti…tm+i-1)|≤qm = 2m⋅log q. 
• Hence, Corollary 7.5 implies that |f(s)-f(ti…tm+i-1)| 

can have at most π(m⋅log q) prime divisors.

2/7/2018 Chapter 7 17



Karp-Rabin Algorithm
Proof (continued):
• Since f(s) mod p = f(ti…tm+i-1) mod p, p

divides |f(s)-f(ti…tm+i-1)|.
• Hence, p is a prime divisor of this product.
• If p admits a wrong matching, then p must be 

one of at most π(m⋅log q) many prime 
divisors.

• Since p is randomly chosen out of π(P), the 
probabiliy that p admits a wrong matching is 
at most π(m⋅log q)/π(P).
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Karp-Rabin Algorithm
Theorem 7.7: Let s and t be strings with m⋅log q≥29 and let P=m2⋅log q, where

|t|=n, |s|=m, and |Σ|=q-1. If s is contained k times in t, then the expected 
runtime of Karp-Rabin is O(n+k⋅m).

Proof:
• R: set of positions in t at which s does not start.
• For each position i∈R we define a binary random variable Xi to be 1 if and 

only if there is a wrong matching at position i.
• Let N=m⋅log q. From Lemma 7.3 and Lemma 7.6 we know that

π(N)      1.105 N/ln(N)             1.2  ln(N⋅m)      2
π(P)     0.922 N⋅m/ln(N⋅m)        m    ln(N)        m

• Let X=Σi∈R Xi. Due to the linearity of expectation,
E[X] = Σi∈R E[Xi] ≤ 2|R|/m

• Since a wrong matching consumes O(m) time and otherwise we just need 
time O(1) for a position i∈R, the expected total runtime is O(n) for R.

• For the k positions of t that contain s, a total runtime of O(k⋅m) is needed.
• Combining the runtimes results in the theorem.
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E[Xi] ≤ ≤ ≤ ≤



Knuth-Morris-Pratt Algorithm
Observation: on mismatch at the i-th symbol in the 

search string, we know the previous i-1 symbols in 
the text.

Idea: precompute what to do on a mismatch

Example:
• search string s: ababcab
• text: ababa….

ababcab
ababcab  (shift s by two for next possible  

match and continue scanning
at current position a in the text)
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Knuth-Morris-Pratt Algorithm
In general:
• Suppose that (s1…si)=(t1…ti) but si+1≠ti+1. 
• Then move to the first position d in t so that (s1…si-d+1) = 

(td…ti) and continue with scanning the text at ti+1.
• In this case, it certainly holds that (s1…si-d+1) = (sd…si).
• We want to determine these jumps for all i in a  

preprocessing.
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1      d is:

1         i-d+1

i+1= =

≠

…

1                          it: i+1= =…



Knuth-Morris-Pratt Algorithm
In general:
• Suppose that (s1…si)=(t1…ti) but si+1≠ti+1. 
• Then move to the first position d in t so that (s1…si-d+1) = 

(td…ti) and continue with scanning the text at ti+1.
• In this case, it certainly holds that (s1…si-d+1) = (sd…si).
• We want to determine these jumps for all i in a  

preprocessing.

Goal of the preprocessing:
• For every position i in s, find the minimal d>1 so that 

(s1…si-d+1) = (sd…si). If there is no such d, we set it to i+1.
• Let the resulting d for that i be denoted di.
• The di´s will be stored in an array so that they are quickly 

accessible to the KMP algorithm.
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Knuth-Morris-Pratt Algorithm
Preprocessing:
For each i, find
minimial di so that

Lemma 7.8: For every i∈{1,…,m-1}, di≤di+1.
Proof:
• Consider an arbitrary i.
• There is no 1<d<di with (sd…si) = (s1…si-d+1).
• Hence, there cannot be a 1<d<di with 

(sd…si+1) = (s1…si-d+2), which implies that di≤di+1.

But how can we compute exact values of di?
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1      di is:

1         i-di+1

i+1= =…



Knuth-Morris-Pratt Algorithm
• Suppose that we have already computed d1, 

…,di and we want to compute di+1. The first 
candidate according to Lemma 7.8 would be 
di. For di it holds that (s1…si-di+1) = (sdi…si). 
If also s(i+1)-di+1=si+1, then (s1…s(i+1)-di+1) = 
(sdi…si+1) and we can set di+1=di.
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1      di is:
1         i-di+1 (i+1)-di+1

i+1



Knuth-Morris-Pratt Algorithm
• If s(i+1)-di+1≠si+1, then we have not yet found a 

matching for si+1. Let i´=i-di+1. Then we have to 
find for (s1…si´) the first d with (s1…si´-d+1) = 
(sd…si´). The first candidate for that is di´ since 
(s1…si´-di´+1) = (sdi´…si´). If also s(i´+1)-di´+1=si+1, then 
we can set di+1=di+(di´-1).
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1      di is:
1                 i-di+1 (i+1)-di+1

i+1

1      i´-di´+1

1      di´ i´

(i´+1)-di´+1

di+1

=



Knuth-Morris-Pratt Algorithm
• If s(i´+1)-di´+1≠si+1, then we set i´´=i´-di´+1

and we continue our search as for i´.
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1      di is:
1                 i-di+1 (i+1)-di+1

i+1

1      i´-di´+1

1                       i´

(i´+1)-di´+1

1             i´´



Knuth-Morris-Pratt Algorithm
From these rules we can construct an efficient algorithm for
computing the di-values:

Algorithm KMP-Preprocessing:
d0:=2; d1:=2  // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1) 

di:=δ

Example: s=ababaca
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i 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7



Knuth-Morris-Pratt Algorithm
Algorithm KMP-Preprocessing:

d0:=2; d1:=2  // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1) 

di:=δ

Theorem 7.9: The runtime of the KMP-Preprocessing is O(m).
Proof:
• Since all di≥2, δ will be increased in each while loop.
• Since the condition of the while loop cannot be satisfied again once

δ>m, the while loop is executed at most m times over all iterations of
the for-loop.

• The for-loop is executed at most m times as well.
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Knuth-Morris-Pratt Algorithm
Algorithm KMP:

execute KMP-Preprocessing
i:=1  // current position in t
j:=1  // current starting position of s in t
while i≤n do

if j≤i and ti≠si-j+1 then
j:=j+di-j-1

else
if i-j+1=m then  // match found

output j
j:=j+dm -1

i:=i+1
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1                       i-js: i-j+1

t: ti=si-j+1?j                        i-1



Knuth-Morris-Pratt Algorithm

Theorem 7.10: The runtime of the KMP 
algorithm is O(n).

Proof:
• In each while-loop, i or j is increased.
• Since i and j are bounded above by n, the 

theorem follows.

Can we be faster than linear time?
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Knuth-Morris-Pratt Algorithm
Further improvement of KMP-Preprocessing:

Original goal of the preprocessing:
• For every position i in s, find the minimal d>1 so that 

(s1…si-d+1) = (sd…si). If there is no such d, we set it to i+1.

Improved goal of the preprocessing:
• For every position i in s, find the minimal d´>1 so that 

(s1…si-d´+1) = (sd´…si) and si-d´+2≠si+1. If there is no such d´, we
set it to i+2.
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1      d´ is:
1        i-d´+1 (i+1)-d´+1

i+1

t: tj≠si+1

should be different!



Knuth-Morris-Pratt Algorithm
Algorithm KMP-Preprocessing2:

d0:=2; d1:=2  // movement of s by 1
δ:=d1 // current shifting position of s
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+di-δ -1

di:=δ
// computation of d´-values
d´0:=2
for i:=1 to m-1 do

if di>i then // no matching parts
if s1≠si+1 then d´i:=di else d´i:=di+1

else
if di+1>di then // mismatch at i+1

d´i:=di
else

i´:=i - di + 1
d´i:=di + d´i´ - 1

d´m:=dm // all symbols are matching 
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1      di is:

1                 i-di+1 (i+1)-di+1

i+1

1    i´-d´i´+1

1                       i´

(i´+1)-d´i´+1

=

≠

1      is:

s1

di
≠



Knuth-Morris-Pratt Algorithm
Example: s=ababaca

KMP-Preprocessing:

KMP-Preprocessing2:

Better, but still not faster than linear time.
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i 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7

i 0 1 2 3 4 5 6 7
d´i 2 2 4 4 6 3 8 7



Boyer-Moore Algorithm
Idea: compare search string s with a text t from right to 

left.

Example: s=OHO, t=ALCOHOLIC
ALCOHOLIC
OHO  ← mismatch at first letter, no C in OHO

OHO   ← match 
OHO   ← mismatch at first letter,

no I in OHO, so we are done

A runtime of O(n/m) is possible.
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Boyer-Moore Algorithm
Algorithm Naive Boyer-Moore:

i:=1
while i≤n-m+1 do

j:=m  // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i // match found
i:=i+1

Naive Boyer-Moore Algorithm doesn´t jump forward quickly
enough, but there are various ways to accelerate that.
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j+1             ms:

i+j-2       i+m-1t: = …
1    j-1

i i+j

j

i+j-1 =



Boyer-Moore Algorithm
Occurance shift preprocessing:
• For every c∈Σ, compute

last[c]:=max{ j∈{1,…,m} | sj=c }
If there is no c in s, set last[c]:=0.

Can certainly be done in O(m) time.

Boyer-Moore algorithm with occurance shift:
i:=1  
while i≤n-m+1 do

j:=m  // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}
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Boyer-Moore Algorithm
Boyer-Moore algorithm with occurance shift:

i:=1  
while i≤n-m+1 do

j:=m  // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}
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j+1      ms: j

t: i+j-1i

1
last[ti+j-1]

Or better: i:=i+(dm-1)



Boyer-Moore Algorithm
Boyer-Moore algorithm with occurance shift:

i:=1  
while i≤n-m+1 do

j:=m  // (s1…sm)=(ti…ti+m-1)?
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output i ; i:=i+1 // match found

else i:=i+max{1,j-last[ti+j-1]}

In practice, this is already much faster, but we can do
better with the following suffix rule.
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Boyer-Moore Algorithm
1. Compute the minimal d1∈ {1,…j} with sj-d1+1≠sj (BM2) and 

(sj-d1+2…sm-d1+1)=(sj+1…sm) (BM1). If there is no such d1, we
set d1 to m+1.

2.    Compute the minimal d2∈{j+1,…m} with (s1…sm-d2+1) = 
(sd2…sm). If there is no such d2, we set d2 to m+1.
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j+1                        m

j-d1+2           m-d1+1

j

j-d1+1

j+1   d2 m
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Boyer-Moore Algorithm
The suffix rule allows us to increase i by d=min(d1,d2)
without missing a matching. For all 0≤j≤m let Dj=d for 
the d above. With these Dj-values we can run the 
improved Boyer-Moore Algorithm.

Algorithm Boyer-Moore:
execute BM-Preprocessing to obtain D
i:=1
while i≤n-m+1 do

j:=m
while j≥1 and sj=ti+j-1 do

j:=j-1
if j=0 then output j // match found
i:=i+Dj-1    // only change compared to naive BM
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Boyer-Moore Algorithm

Example: s=abaababaabaab

It is not so easy to compute that efficiently…
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j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
sj a b a a b a b a a b a a b
Dj 8 8 8 8 8 8 8 8 3 11 11 6 13 1



Boyer-Moore Algorithm
First, we consider the problem of implementing rule 2 of the suffix rule:
• Compute the minimal d2∈{j+1,…m} with (s1…sm-d2+1) = (sd2…sm). If 

there is no such d2, we set d2 to m+1. Let us call this d2 dj,2.

• Let d0,…,dm be the values from the KMP preprocessing.
• It is easy to see that d0,2=dm.
• For j>0, we keep shifting s until dj,2>j.
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j+1   dj,2 m

1           m-dj,2+1

j

j+1                           m

1                    di i
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1                  i-di+1



Boyer-Moore Algorithm
• Let d0,…,dm be the values from the KMP preprocessing.
• It is easy to see that d0,2=dm. For j>0, we keep shifting s until

dj,2>j.

d0,2:=dm
δ:=dm; i:=m-δ+1      // δ: shift candidate for dj,2
for j:=1 to m do

if j≥δ then // j too large: one more shift
δ:=δ+(di-1)
i:=i-di+1

dj,2:=δ
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j+1                           m

1                    di i

j

1                  i-di+1



Boyer-Moore Algorithm
d0,2:=dm
δ:=dm; i:=m-δ+1      // δ: shift candidate for dj,2
for j:=1 to m do

if j≥δ then // j too large: one more shift
δ:=δ+(di-1)
i:=i-di+1

dj,2:=δ

Example: s=ababaca
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i / j 0 1 2 3 4 5 6 7
di 2 2 3 3 3 3 7 7

dj,2 7 7 7 7 7 7 7 8



Boyer-Moore Algorithm
Next, we want to implement rule 1 of the suffix rule: 

Remember improved KMP-preprocessing:
• For every position i in s, find the minimal d´>1 so that 

(s1…si-d´+1) = (sd´…si) and si-d´+2≠si+1. If there is no such d´, we
set it to i+2.
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minimize dj,1

1             d´ is:
1        i-d´+1 (i+1)-d´+1
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j+1                       m
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Boyer-Moore Algorithm

• Let s´ be the reverse s. Then we obtain the following equivalent
problem for s´:

• Substituting j by m-j and re-defining dj,1:=dm-j,1 gives us:
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minimize dj,1

j+1                       m

j-dj,1+2       m-dj,1+1
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Boyer-Moore Algorithm
• So we have:

In the KMP-Preprocessing2 we solve:

• So for each j we can set dj,1:=min{ d´i | i∈{1,…,m-1}, i-d´i+1=j }. For
all other j´s there is no solution, so we use the default value given in 
rule 1.
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dj,1-j

j+1

dj,1 j+dj,1-1
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Boyer-Moore Algorithm
So for the original j we use the rule: 

dj,1:= min{ d´i | i∈{1,…,m-1}, i-d´i+1=j }. 
If no such i exists, we set dj,1:=m+1. 

Algorithm for rule 1:
compute d´1,…,d´m-1 for s´
for j:=0 to m do

dj,1:=m+1
for i:=1 to m-1 do

j:=m-(i-d´i+1)
if j≤m and d´i<dj,1 then

dj,1:=d´i
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Boyer-Moore Algorithm
// computation of d-values for s´
d0:=2; d1:=2  // movement of s by 1
δ:=d1 // current shift position of s
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+di-δ -1

di:=δ

Example: s=ababaca, so s´=acababa

2/7/2018 Chapter 7 49

i 0 1 2 3 4 5 6 7
di 2 2 3 3 5 5 7 7
d´i 2 2 4 3 6 5 8 7

// computation of d´-values for s´
d´0:=2
for i:=1 to m-1 do

if di>i then // no matching parts
if s1≠si+1 then d´i:=di else d´i:=di+1

else
if di+1>di then // mismatch at i+1

d´i:=di
else

i´:=i - di + 1
d´i:=di + d´i´ - 1

d´m:=dm // all symbols are matching



Boyer-Moore Algorithm

compute d´1,…,d´m-1 for s´
for j:=0 to m do

dj,1:=m+1
for i:=1 to m-1 do

j:=m-(i-d´i+1)
if j≤m and d´i<dj,1 then

dj,1:=d´i

Example: s=ababaca, so s´=acababa
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i / j 0 1 2 3 4 5 6 7
d´i 2 2 4 3 6 5 8 7
dj,1 8 8 8 8 8 8 3 2
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Boyer-Moore Algorithm
Example: s=ababaca. Remember that Dj=min{dj,1,dj,2}.

Hence, most of the time there are very large jumps.
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j 0 1 2 3 4 5 6 7
dj,1 8 8 8 8 8 8 3 2
dj,2 7 7 7 7 7 7 7 8
Dj 7 7 7 7 7 7 3 2



Boyer-Moore Algorithm
One can show the following result:

Theorem 7.11: Let k be the number of times the 
search string occurs in the text. Then the Boyer-
Moore Algorithm has a runtime of O(n+k⋅m).

The proof is very complex and omitted here.

Remarks:
• If (BM2) is dropped, then the runtime increases to 

O(n⋅m).
• In practice, the Boyer-Moore Algorithm has a 

runtime of O(n/m).
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Boyer-Moore Algorithm
Remarks: 
• To reduce the runtime from O(n+km) to O(n+m), we can use

the fact that whenever s has been found in t, we only have to
check sj=ti+j-1 for j∈{m-dm+2,…,m}.

• To further reduce the runtime, we can combine the suffix rule
with the occurance shift rule by setting
i:=i+max{ Dj-1, j-last[ti+j-1]}.
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Aho-Corasick Algorithm
Now we have the following situation: search in 

a text t for all positions in which a search 
string in S={s1,…,sk} starts.

In the following let mi=|si| and m = Σi=1
k mi.

First idea: run the KMP algorithm in parallel for 
all search strings.

Runtime: O(m+k⋅n)
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Aho-Corasick Algorithm
Better idea: instead of tables of di-values, use a finite 

automaton.

Example: let s=abaaba
• Table of di-values:

• Finite automaton:
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i 0 1 2 3 4 5 6
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Aho-Corasick Algorithm
Example: let s=abaaba
• Table of di-values:

• Finite automaton:
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i 0 1 2 3 4 5 6
di 2 2 3 3 4 4 4

0 1 2 3 4 5 6a b a a b a

Regular transition Failure transition Accepting state:
s found

State i: first i
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Aho-Corasick Algorithm
Example: let s=abaaba

This is called an AC-automaton.

Definition 7.12: An AC-automaton consists of:
• Q: a finite set of states
• Γ=Σ∪{fail} : a finite alphabet (with input alphabet Σ)
• δ:Q×Γ→Q: a transition function
• q0: an initial state and
• F⊆Q: a set of accepting states
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Aho-Corasick Algorithm
Example: let s=abaaba

AC-automaton for s∈Σ* with |s|=m:
• Q={-1,0,1…,m}, q0=0, and F={m}
• Γ=Σ∪{fail}
• For all i∈{0,…,m-1}, δ(i,si+1)=i+1 
• For all i∈{0,…,m}, δ(i,fail)=i-di+1

The fail-transition is used if a symbol is read that does 
not have a regular transition.
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Aho-Corasick Algorithm
AC preprocessing for a single search string s:

Algorithm AC-Preprocessing:
d0:=2; d1:=2  // movement of s by 1
δ:=d1 // δ: current candidate of di
for i:=2 to m do

while δ≤i and si≠si-δ+1 do
// (s1…si-δ)=(sδ…si-1) but si-δ+1≠si
δ:=δ+(di-δ -1) 

di:=δ
// compute f0,…,fm for fail transitions
for i:=0 to m do fi:=i-di+1

Lemma 7.13: The AC preprocessing has a runtime of O(m).
Proof: follows from KMP proprocessing. 
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Aho-Corasick Algorithm
Aho-Corasick Algorithm for one search string:

execute AC-Preprocessing
j:=0   // starting position in automaton
for i:=1 to n do

while (j≠-1 and ti≠sj+1) do
j:=fj

j:=j+1
if j=m then output i-m+1

Theorem 7.14: The AC algorithm for a single search 
string is correct and runs in time O(n).

Proof: follows from analysis of KMP algorithm

2/7/2018 Chapter 7 60



Aho-Corasick Algorithm
AC automaton for a set S of multiple search strings:
• Q={ w∈Σ* | w is a prefix of an s∈S}∪{fail} and q0=ε
• F=F1∪F2 where

– F1=S and
– F2={w∈Σ* | ∃s∈S: s is a suffix of w}

• For all w∈Q and a∈Σ it holds:
– δ(w,a) = w∘a whenever w∘a∈Q, and otherwise
– δ(w,fail)=w´ for the w´∈Q representing the largest 

suffix of w. For w=ε, δ(w,fail)=fail (where „fail“ 
represents the state that was previously „-1“).
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Aho-Corasick Algorithm

Example: S={he,she,his,hers}
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Aho-Corasick Algorithm
Aho-Corasick Algorithm for a set S of search strings:
• m: sum of lengths of all s∈S
• fw: state reached by δ(w,fail)
• Sw: set of all s∈S that are a suffix of w

execute Extended-AC-Preprocessing
w:=ε // starting position in AC automaton
for i:=1 to n do

while (w≠fail and δ(w,ti) is not defined) do
w:=fw

if w=fail then w:=ε else w:=w∘ti
if w∈F then output (i,Sw)

Theorem 7.15: The AC algorithm is correct and has a runtime of 
O(n+m).

Proof: it remains to specify Extended-AC-Preprocessing
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in 

three phases:
Phase I: construct the prefix tree of S with the 

regular transitions and mark the states
belonging to F1

Phase II: compute the fail transitions in 
breadth-first-search order starting with state ε

Phase III: compute the states belonging to F2 
and the sets Sw for all w∈F1∪F2 in breadth-
first-search order starting with state ε
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase I: construct the prefix tree of S with the regular transitions

and mark the states belonging to F1

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase I: construct the prefix tree of S with the regular transitions

and mark the states belonging to F1

Algorithm for Phase I:
Build a trie for S and set F:=S

Runtime: O(m)
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Example: S={he,she,his,hers}

2/7/2018 Chapter 7 68

ε hhfail he her hers

s

hi his

sh she

e r s

i
s

s

h e



Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase II: compute the fail transitions in breadth-first-search order 

starting with state ε

Algorithm for Phase II: similar to KMP preprocessing
• Consider a state of the AC automaton representing s1…si+1. 

Start with fail transition of s1…si for largest potential suffix for 
fail transition of s1…si+1.
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Extended-AC-Preprocessing
Phase II:
• Initialization:

– fε:=fail
– fa:=ε for all a∈Σ

• For all w∈Q\{ε} in BFS order:
– fw:=fpred(w) // pred(w): w without last symbol
– while (fw≠fail and δ(fw,last(w)) undefined) do

// last(w): last symbol of w
fw:=ffw

– if fw=fail then fa:=ε else fw:=δ(fw,last(w)) 

Lemma 7.16: The Extended-AC-Preprocessing needs at most 
O(m) time to compute the AC automaton.

Proof: Exercise.
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Example: S={he,she,his,hers}
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Extended-AC-Preprocessing
The AC automaton for S can be constructed in three phases:
Phase III: compute the states belonging to F2 and the sets Sw for

all w∈F1∪F2 in breadth-first-search order starting with state ε

Algorithm of Phase III:
• For all w∈Q\F do Sw:={}  // at this point we still have F=F1
• For all w∈F do Sw:={w}
• For all w∈Q\{ε} in BFS order:

- Sw:=Sw∪Sfw

- if Sw≠{} then F:=F∪{w} 

Runtime: O(m)  (when storing Sw‘s implicitly via links)
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Aho-Corasick Algorithm
Aho-Corasick Algorithm for regular expressions (basic idea):
• Build non-deterministic finite automaton (NFA) for that regular

expression with starting state q0.
• Add transitions δ(q0,c)=q0 for every c∈Σ to take into account

that the string s matching the regular expression in the given
text t could start at any point in t.

• Convert the NFA into a deterministic automaton (DFA) using
the power set method, if the state-space of the DFA does not 
get too large.

Theorem 7.17: With an NFA of size m for the regular expression
R, it can be checked in O(n⋅m) time whether there is a substring
s in t with s∈R. With a DFA, the runtime can be reduced to O(n), 
but the time needed to set up the DFA might be around O(2m).
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Suffix Trees
• Given a text t, we now consider the problem of

preprocessing t so that we can check for any search
string s of length m in O(m) time whether s is a 
substring of t.

• Solution: suffix tree of t

Definition 7.18: Let t=t1…tn-1$ be a text with special end 
symbol $.
• t[i..n]=ti…tn denotes the suffix of t starting with ti.
• The suffix trie ST(t) of t is the trie resulting from the

strings t[1..n],t[2..n],…,t[n..n] (see Section 3). Every 
leaf of ST(t) stores i if and only if it represents t[i..n].
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Suffix Trees

Example: t=abcabc$.
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Suffix Trees
Remarks: 
• If we want to check whether s is a substring of t, we simply

follow the unique path in ST(t) whose edge labels form s. If
this path exists, s is indeed a substring of t, and otherwise this
is not the case. Certainly, this checking can be done in O(|s|) 
time.

• If we additionally want to know all positions at which s starts in 
t, we need to determine the set of all i∈{1,..,n} stored in the
leaves reachable from the trie node representing s in ST(t).

Problem: ST(t) may have Θ(n2) many nodes, where n is the
length of t. This is the case, for example, for t=ambm$.

Solution: Condense ST(t) to the Patricia trie of ST(t).
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Suffix Trees
Definition 7.19: The suffix tree PT(t) of t is the Patricia 
trie of ST(t).

Example: t=abcabc$.
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Suffix Trees
Lemma 7.20: For any text t=t1…tn-1$, PT(t) consists of just O(n) nodes.
Proof: follows from the properties of Patricia tries.

For every node v in PT(t) define
• count(v): number of leaves below it,
• first(v): minimum index i stored below it, and
• last(v): maximum index i stored below it. 
Suppose that every node v in PT(t) stores count(v), first(v), and last(v).

Theorem 7.21: For every search string s, the following queries can be
answered in O(|s|) time:
• Find the first occurence of s in t.
• Find the last occurence of s in t.
• Find the number of times s occurs in t.
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Suffix Trees
Problem: How to construct PT(t) efficiently?

Naive approach:
T0:= suffix tree just consisting of the root
for i:=1 to n do

Ti:=insert(Ti-1,t[i..n])

Runtime of insert(Ti-1,t[i..n]):
• Standard approach of traversing the edges of Ti-1 from the root: 

time O(n)  (since depth of Ti-1 can be proportional to i and up to n-i
characters may have to be checked to find insertion point)

• When using the hashed Patricia trie with msd-nodes and ignoring
work for individual character comparisons: runtime is O(log n)

In any case, the best achievable bound seems to be O(n log n) for
constructing PT(t).
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Suffix Trees
The algorithm of McCreight can construct PT(t) in time O(n) (including
the time for character comparisons). To understand that algorithm we
need some notation.

Definition 7.22: 
• For any node v in a suffix tree T let path(v) be the concatenation of

edge labels from the root of T down to v.
• For any string α∈Σ*, we say that α∈T if there is a node v in T with α

being a prefix of path(v).
• For any i∈{1,…,n}, let head(i) be the longest prefix of t[i..n] that is a 

prefix of some t[j..n] with j<i. Let tail(i) be t[i..n] without head(i).
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Suffix Trees
Note that head(i) is the place where the new node v with
path(v)=t[i..n] needs to be inserted into Ti-1.

If we can find head(i) efficiently, we can quickly insert
t[i..n]. For that we need so-called suffix links.

2/7/2018 Chapter 7 88

t[i..n]t[i..n]

head(i) head(i)



Suffix Trees
Lemma 7.23: Consider any a∈Σ and β∈Σ*, and let Ti be defined
as in the naive suffix tree algorithm. If head(i-1)=aβ then β is a 
prefix of head(i).
Proof:
• Let head(i-1)=aβ.
• Then there is a j<i with aβ being a prefix of

t[j-1..n].
• Hence, β is a prefix of t[j..n] and t[i..n].
• Therefore, β is a prefix of head(i).

2/7/2018 Chapter 7 89

head(i-1) tail(i-1)
i ni-1

j n
…

j-1



Suffix Trees
Definition 7.24: Let u and v be two inner nodes of a suffix tree T. 
Then suf[u]=v if and only if there is a c∈Σ with path(u)=c∘path(v). 
suf[u] is called the suffix link of u.

Lemma 7.25: If u is an inner node in Ti-1 then suf[u] is an inner
node in Ti.
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Suffix Trees
Lemma 7.25: If u is an inner node in Ti-1 then suf[u] is an inner node in 
Ti.
Proof:
• Suppose that u is an inner node in Ti-1.
• Then there are j1,j2<i with path(u) being the longest common prefix

of t[j1..n] and t[j2..n].
• But then path(suf[u]) is the longest common prefix of t[j1+1..n] and

t[j2+1..n], which implies that suf[u] is an inner node in Ti. 
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Suffix Trees
Recall the naive algorithm:
T0:= suffix tree just consisting of the root
for i:=1 to n do

Ti:=insert(Ti-1,t[i..n])

This is also the basic framework for the algorithm of McCreight, 
but the insertion of t[i..n] into Ti-1 is performed differently from the
standard insert:
• At the beginning of the i-th iteration, we assume that all nodes

except for the node v with path(v)=head(i-1) have a suffix link.
• Given that the algorithm knows head(i-1) at the beginning of

the i-th iteration, it will make use of the suffix links to efficiently
locate head(i), which will allow it to insert t[i..n].

• This strategy is called Up-Link-Down.
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Suffix Trees
Up-Link-Down Strategy:
• Let x be the node in Ti-1 with path(x)=head(i-1) and let y be

the father of x. Suppose that head(i-1)=aαβ with a∈Σ and
α,β∈Σ*, as shown in the figure.

• According to Lemma 7.23, we know that αβ∈Ti-1 and that
head(i)=αβγ for some γ∈Σ*.

• Since x does not have a suffix link, we go to y and use the
suffix link from there. This leads to a node u with path(u)=α.
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Suffix Trees
Up-Link-Down Strategy (continued):
• We follow the links downwards from u till we reach the node v

with path(v) being the longest prefix of αβ. Up to that node we
only have to look at the first character of each edge (fastfind) 
since we know that αβ∈Ti-1.

• We can find out when we have reached v by looking at the
length of the edge labels (if these are stored together with the
labels).
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Suffix Trees
Up-Link-Down Strategy (continued):
• If there is no node w yet with path(w)=αβ, we create a new 

node w at that location (by splitting an edge), so in any case
we have reached a node w at the end with path(w)=αβ. 
Lemma 7.25 implies that in this case path(w)=head(i).

• Afterwards, we set suf[x] to w.
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Suffix Trees
Up-Link-Down Strategy (continued):
• If w already existed (so maybe path(w)≠head(i)), we follow the

links downwards from w till we reach the node z with path(z)
being the longest prefix of t[i…n]. Here, we have to look at the
full edge labels, which is why we call this phase slowsearch.

• If path(z)=head(i), then we simply insert a new edge with label
tail(i) into Ti-1 leading to a new leaf representing t[i…n].
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Suffix Trees
Up-Link-Down Strategy (continued):
• We follow the links downwards from w till we reach the node z

with path(z) being the longest prefix of t[i…n]. 
• Otherwise, we insert a new node z´ with path(z´)=head(i) 

below z by splitting an edge and insert a new edge leaving z´
with label tail(i) that leads to a new leaf representing t[i…n].

2/7/2018 Chapter 7 97

aα

x

β
u

suf[y]

α

y
v

β

wsuf[x]

z

t[i…n]

z´



Suffix Trees
Theorem 7.25: The algorithm of McCreight can construct the
suffix tree of a text t in time O(|t|).
Proof:
• The dominant parts of the runtime are the times needed for

fastfind and slowfind.
Runtime of fastfind:
• The time needed is upper bounded by

|father(head(i))|-|father(head(i-1))|+1,
where |v| is the length of the path(v).

• Hence, the overall runtime for
fastfind is at most

Σi=1
n (|father(head(i))|-|father(head(i-1))|+1)

≤ |father(head(n))| + n 
=  O(n) 
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Suffix Trees
Theorem 7.25: The algorithm of McCreight can construct the
suffix tree of a text t in time O(|t|).
Proof:
• The dominant parts of the runtime are the times needed for

fastfind and slowfind.
Runtime of slowfind:
• The time needed is proportional to

|head(i)|-|head(i-1)|+1
• Hence, the overall runtime for

slowfind is proportional to
Σi=1

n (|head(i)|-|head(i-1)|+1)
≤ |father(head(n))| + n 
=  O(n) 
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Suffix Trees
Remarks:
• Once we have built the suffix tree of t, we can

search for any string s in t in time O(|s|).
• We can further accelerate that (in certain

cases such as external memory) when
transforming t‘s suffix tree into a hashed
Patricia trie, which can be done in O(n) time.

• Then we only need O(log |s|) hash table
lookups to find out whether s is a substring of
t or not.
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