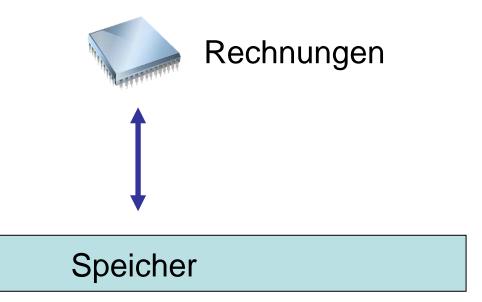
Berechenbarkeit

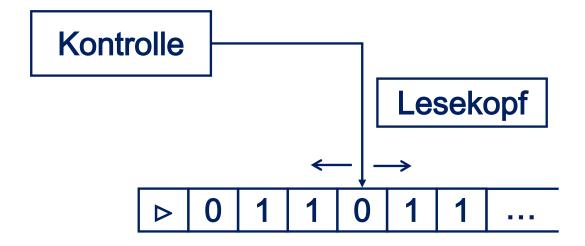
Gesucht: Einfaches aber universelles Rechenmodell

- Einfach: erlaubt formale Analyse
- Universell: kann alle (durch beliebige andere realistische Rechenmodelle) berechenbaren Probleme lösen

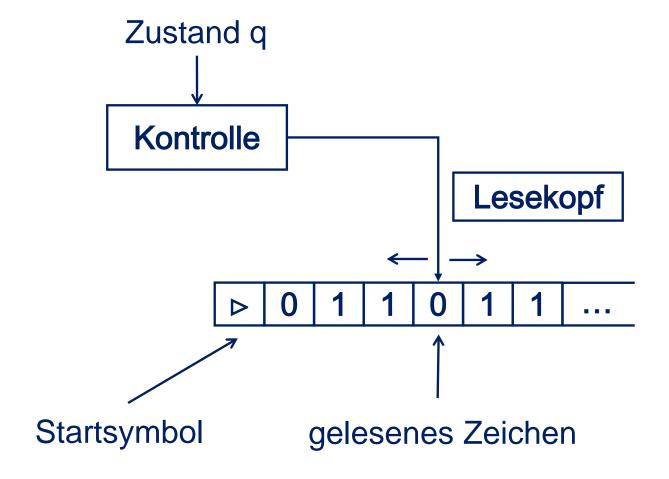
Von Neumann Modell



Turingmaschine



Turingmaschine



Turingmaschine - Definition

Definition 2.1 Eine deterministische 1-Band Turingmaschine (DTM) ist ein 4-Tupel (Q, Σ , Γ , δ), wobei Q, Σ , Γ endliche Mengen sind. Weiter gilt

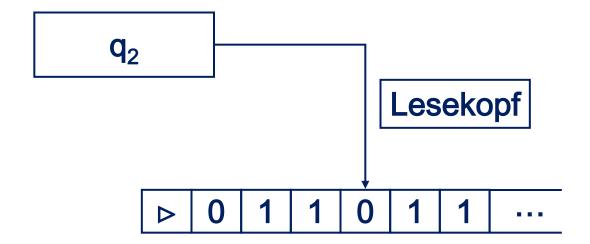
- 1. Q ist die Zustandsmenge mit $q_0, q_{accept}, q_{reject} \in Q$, $q_{accept} \neq q_{reject}$
- 2. Σ ist das Eingabealphabet, $\sqcup, \triangleright \notin \Sigma$.
- 3. Γ ist das Bandalphabet, $\Sigma \subset \Gamma$, \sqcup , $\triangleright \in \Gamma$.
- 4. δ : Q\{q_{accept},q_{reject}}× $\Gamma \rightarrow$ Q× Γ ×{L,R} ist die Übergangsfunktion.

Turingmaschine - Notation, Einschränkungen

- q₀ = Startzustand, q_{accept} = akzeptierender Zustand,
 q_{reject} = ablehnender Zustand
- U= Blank, ▷= Startsymbol
- Für alle $q \in Q$, $a \in \Gamma$, $a \neq \triangleright$: $\delta(q,a) = (p,b,D)$ mit $b \neq \triangleright$, $D \in \{L,R\}$, $p \in Q$.
- Für alle $q \in Q$: $\delta(q, \triangleright) = (p, \triangleright, R), p \in Q$.
- Rechenschritt : = einmalige Anwendung von δ .

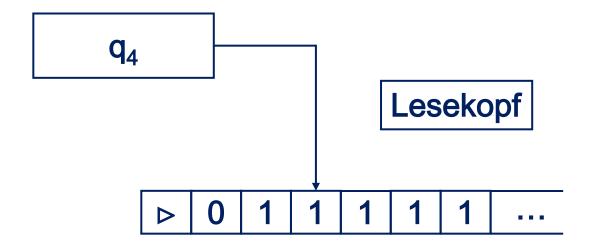
Turingmaschine – schematische Darstellung

Anwendung von $\delta(q_2,0) = (q_4,1,L)$



Turingmaschine – schematische Darstellung

Anwendung von $\delta(q_2,0) = (q_4,1,L)$



Turingmaschine – Beispiel

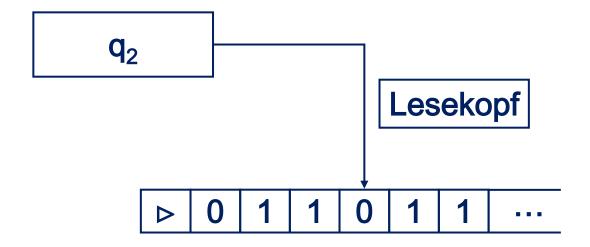
$$\blacksquare Q = \{q_0, q_1, q_2, q_3\}, q_{accept} = q_2, q_{reject} = q_3.$$

δ ist definiert durch die folgende Tabelle

δ	a	>	Ш
q_0	(q_1,a,R)	(q_0, \triangleright, R)	(q_3, \sqcup, R)
q_1	(q_1,a,R)	(q_1, \triangleright, R)	(q_2, \sqcup, R)

Turingmaschine – schematische Darstellung

Was passiert, wenn $\delta(q_2,0)$ nicht definiert ist?



Dann hält die TM (was immer für q_{accept},q_{reject} gilt!).

Turingmaschine - Berechnung

DTM M = (Q, Σ , Γ , δ). Berechnung bei Eingabe w $\in \Sigma^*$:

- startet im Zustand q_0 , mit Bandinhalt \triangleright w und Lesekopf auf \triangleright ,
- wendet in jedem Rechenschritt Übergangsfunktion δ an,
- bis Zustand q_{accept} oder q_{reject} erreicht wird bzw. im Allg. Situation (q,a) erreicht wird, für die δ (q,a) undefiniert ist (d.h. M hält),
- sonst Endlosrechnung.

Turingmaschine – Beispiel

$$\mathbf{Q} = \{q_0, q_1, q_2, q_3\}, \ q_{accept} = q_2, \ q_{reject} = q_3.$$

δ ist definiert durch die folgende Tabelle

δ	a	>	Ш
q_0	(q_1,a,R)	(q_0, \triangleright, R)	(q_3, \sqcup, R)
q_1	(q_1,a,R)	(q_1, \triangleright, R)	(q_2, \sqcup, R)

Turingmaschine - Konfigurationen

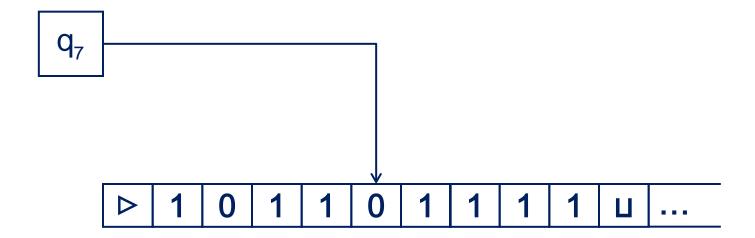
DTM
$$M = (Q, \Sigma, \Gamma, \delta), \alpha, \beta \in \Gamma^*, q \in Q.$$

M ist in Konfiguration $K = \alpha q \beta$, wenn gilt:

- auf dem Band der DTM M steht $\alpha\beta$, gefolgt von Blanks,
- M befindet sich im Zustand q,
- der Lesekopf von M steht auf dem ersten Symbol von β.
- β kann auch Blanks am Ende enthalten.

Turingmaschine - Konfigurationen

Konfiguration ⊳1011q₇01111 ⊔



Nachfolgekonfigurationen

DTM M = (Q,Σ,Γ,δ) . Konfigurationen K_1,K_2 von M

- Konfiguration K_1 führt zu Konfiguration K_2 genau dann, wenn die DTM M durch einen Rechenschritt aus K_1 zu K_2 gelangt (wir schreiben auch $K_1 \rightarrow K_2$).
- Sagen auch, dass K₂ Nachfolgekonfiguration von K₁ ist.

Nachfolgekonfigurationen

DTM
$$M = (Q, \Sigma, \Gamma, \delta)$$
. $a,b,c \in \Gamma, \alpha,\beta \in \Gamma^*, q,p \in Q$.

■ K₁=αaq_ibβ führt zu K₂=αq_iacβ, wenn

$$\delta(q_i,b) = (q_i,c,L).$$

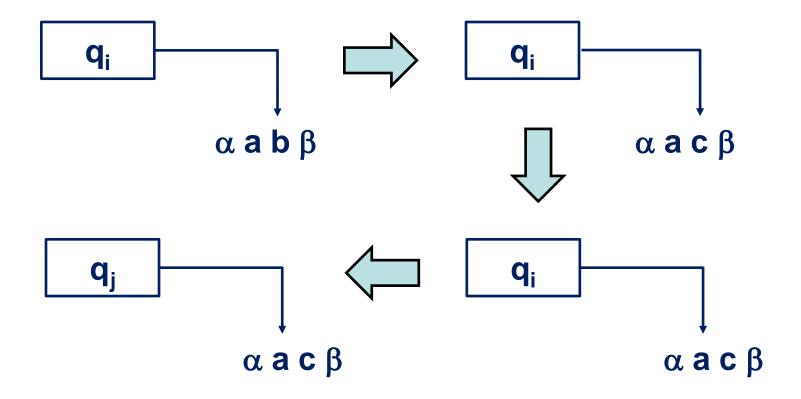
• $K_1 = \alpha a q_i b \beta$ führt zu $K_2 = \alpha a c q_i \beta$, wenn

$$\delta(q_i,b) = (q_i,c,R).$$

• $K_1 = q_i b \beta$ und $b = \triangleright$, so muss $\delta(q_i, b) = (q_j, \triangleright, R)$ gelten, also $K_2 = \triangleright q_j \beta$.

Nachfolgekonfigurationen

Anwendung von $\delta(q_i,b)=(q_i,c,L)$ in kleinen Schritten:



Berechnungen und Konfigurationen

DTM
$$M = (Q, \Sigma, \Gamma, \delta), w \in \Sigma^*$$

- Eingabe für M ist w, dann heißt q₀>w Startkonfiguration.
- $K=\alpha q\beta$ heißt akzeptierende Konfiguration, falls $q=q_{accept}$.
- $K = \alpha q \beta$ heißt ablehnende Konfiguration, falls $q = q_{reject}$.
- Berechnung von M bei Eingabe w führt zu Folge K₁,K₂,... von Konfigurationen.
- Diese Folge kann endlich oder unendlich sein.

Turingmaschine – Beispiel

$$\mathbf{Q} = \{q_0, q_1, q_2, q_3\}, s = q_0, q_{accept} = q_2, q_{reject} = q_3.$$

$$Σ = {a}, Γ = {a, ⊔, ▷}$$

δ ist definiert durch die folgende Tabelle

δ	a	>	Ш
q_0	(q_1,a,R)	(q_0, \triangleright, R)	(q_3, \sqcup, R)
q_1	(q_1,a,R)	(q_1, \triangleright, R)	(q_2, \sqcup, R)

Berechnungen und Konfigurationen

Definition 2.2 DTM M = $(Q, \Sigma, \Gamma, \delta)$, $w \in \Sigma^*$.

- 1. M akzeptiert w, falls es Konfigurationen K₁,K₂,...,K_I gibt, so dass
 - a) K₁ ist Startkonfiguration von M bei Eingabe w.
 - b) K_i führt zu K_{i+1} (d.h. $K_i \rightarrow K_{i+1}$), i = 1,...,l-1.
 - c) K_I ist akzeptierende Konfiguration.
- 2. M lehnt w ab, falls es Konfigurationen K₁,K₂,...,K_I gibt, so dass
 - a) K₁ ist Startkonfiguration von M bei Eingabe w.
 - b) K_i führt zu K_{i+1} , i = 1,...,l-1.
 - c) K_I ist ablehnende Konfiguration.

DTM M₁

δ	0	1	Ш	\triangleright
q_0	$(q_1, 0, R)$	$(q_8, 1, R)$	(q_8, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	(q_8, \sqcup, R)	(q_8, \triangleright, R)
q_2	$(q_8, 0, R)$	$(q_2, 1, R)$	(q_3, \sqcup, L)	(q_8, \triangleright, R)
q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_4, \sqcup, R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q_3, \sqcup, L)	(q_8, \sqcup, R)	(q_8, \triangleright, R)

$$q_7 = q_{accept}, q_8 = q_{reject}$$

Berechnung von M₁ bei Eingabe 0011

q ₀ ⊳0011⊔	⊳q ₃ 0011⊔	⊳⊔ q ₃ 01 ⊔⊔
⊳q ₀ 0011⊔	q ₃ ⊳ 0011 ⊔	⊳q ₃ ⊔01⊔⊔
>0q ₁ 011⊔	⊳q ₄ 0011⊔	⊳⊔ q ₄01⊔⊔
>00q ₁ 11⊔	⊳⊔ q ₅ 011⊔	⊳⊔⊔ q ₅ 1 ⊔⊔
>001q ₂ 1⊔	⊳⊔ 0 q ₅ 11⊔	>⊔⊔ 1q ₅ ⊔⊔
>0011q ₂ ⊔	⊳⊔ 01q ₅ 1⊔	>⊔⊔ q ₆ 1 ⊔⊔
⊳001q ₃ 1⊔	⊳⊔ 011q ₅⊔	⊳⊔ q ₃⊔⊔⊔⊔
>00q ₃ 11⊔	⊳⊔ 01q ₆ 1⊔	⊳⊔⊔ q ₄⊔⊔⊔
>0q ₃ 011⊔	⊳⊔ 0q ₃ 1 ⊔⊔	⊳⊔⊔⊔ q ₇ ⊔⊔

Akzeptieren und Entscheiden

Definition 2.3 DTM M = (Q,Σ,Γ,δ) . Die Menge der von M akzeptierten Worte aus Σ^* ist die von M akzeptierte Sprache. Geschrieben L = L(M).

Definition 2.4 DTM M = (Q,Σ,Γ,δ) . DTM M entscheidet die von ihr akzeptierte Sprache L(M), wenn M alle Worte, die nicht in L(M) liegen, ablehnt.

Turingmaschine – Beispiel

$$\mathbf{Q} = \{q_0, q_1, q_2, q_3\}, q_{accept} = q_2, q_{reject} = q_3.$$

δ ist definiert durch die folgende Tabelle

δ	a	>	Ш
q_0	(q_1,a,R)	(q_0, \triangleright, R)	(q_3, \sqcup, R)
q_1	(q_1,a,R)	(q_1, \triangleright, R)	(q_2, \sqcup, R)

$$L(M) = \{a^n \mid n \ge 1\}.$$

DTM M₁ für L ={0ⁿ1ⁿ|n≥1}

M₁ bei Eingabe w∈{0,1}*:

- Teste, ob die Eingabe von der Form 0ⁱ1^j ist, i,j∈IN (sonst nicht akzeptieren).
- 2. Falls ja, gehe zum Beginn der 0/1-Folge zurück und streiche die erste 0 und die letzte 1.
- 3. Falls dabei noch eine 0 aber keine 1, oder eine 1 aber keine 0 mehr auf dem Band steht, lehne ab.
- 4. Falls dabei weder eine 0 noch eine 1 auf dem Band steht, akzeptiere (i=j). Sonst wiederhole 2.

DTM M_1 für L={ $0^n1^n | n \ge 1$ }

Teste, ob die Eingabe von der Form 0ⁱ1^j ist, i,j∈IN (sonst nicht akzeptieren).

δ	0	1	Ш	\triangleright
q_0	$(q_1, 0, R)$	$(q_8, 1, R)$	(q ₈ , ⊔, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	(q ₈ , ⊔, R)	(q_8, \triangleright, R)
q_2	$(q_8, 0, R)$	$(q_2, 1, R)$	(q_3, \sqcup, L)	(q_8, \triangleright, R)
q_3				
q_4				
q_5				
q_6				

$$q_7 = q_{accept}, q_8 = q_{reject}$$

DTM M_1 für L= $\{0^n1^n | n \ge 1\}$

2. Falls ja, gehe zum Beginn der 0/1-Folge zurück und streiche die erste 0 und die letzte 1.

δ	0	1	Ш	\triangleright
q_0				
q_1				
q_2				
q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_4,\sqcup,R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q_3, \sqcup, L)	(q_8,\sqcup,R)	(q_8, \triangleright, R)

$$q_7 = q_{accept}, q_8 = q_{reject}$$

DTM M_1 für L= $\{0^n1^n | n \ge 1\}$

3. Falls dabei noch eine 0 aber keine 1, oder eine 1 aber keine 0 mehr auf dem Band steht, lehne ab.

δ	0	1	Ш	>
q_0				
q_1				
q_2				
q_3	$(q_3, 0, L)$	$(q_3, 1, L)$	(q_4, \sqcup, R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q_3, \sqcup, L)	(q_8,\sqcup,R)	(q_8, \triangleright, R)

$$q_7 = q_{accept}, q_8 = q_{reject}$$

DTM M₁ für L={0ⁿ1ⁿ|n≥1}

4. Falls dabei weder eine 0 noch eine 1 auf dem Band steht, akzeptiere (i=j). Sonst wiederhole 2.

δ	0	1	Ш	\triangleright
q_0				
q_1				
q_2				
q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_4, \sqcup, R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q ₃ , ⊔, L)	(q_8,\sqcup,R)	(q_8, \triangleright, R)

$$q_7 = q_{accept}, q_8 = q_{reject}$$

WS 2018/19 Turingmaschinen 29

 M_2 bei Eingabe $w \in 0^*$:

- 1. Durchlaufe die Eingabe von links nach rechts und streiche dabei jede zweite 0.
- 2. Wird im ersten Schritt festgestellt, dass nur noch eine 0 auf dem Band steht, akzeptiere.
- 3. Wird im ersten Schritt festgestellt, dass mehr als eine 0, aber eine ungerade Anzahl von 0 auf dem Band steht, lehne ab.
- 4. Gehe zum Beginn des Bandes und starte ersten Schritt.

DTM M₂ für L=\{0^{2^n} | n \ge 0\}

Start: bereite Schritt 1. vor

δ	0	X	Ш	\triangleright
q_0	$(q_1, 0, R)$	(q_6, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1				
q_2				
q_3				
q_4				

$$q_5 = q_{accept}, q_6 = q_{reject}$$

1. Durchlaufe die Eingabe von links nach rechts und streiche dabei jede zweite 0.

δ	0	X	Ш	\triangleright
q_0	$(q_1, 0, R)$	(q_6, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	(q_2,x,R)	(q_1,x,R)	(q_5, \sqcup, L)	(q_6, \triangleright, R)
q_2	$(q_3, 0, R)$	(q_2,x,R)	(q_4,\sqcup,L)	(q_6, \triangleright, R)
q_3				
q_4				

$$q_5 = q_{accept}, q_6 = q_{reject}$$

2. Wird im ersten Schritt festgestellt, dass nur noch eine 0 auf dem Band steht, akzeptiere.

δ	0	X	Ш	\triangleright
q_0	$(q_1, 0, R)$	(q_6, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	(q_2,x,R)	(q_1,x,R)	(q_5, \sqcup, L)	(q_6, \triangleright, R)
q_2	$(q_3, 0, R)$	(q_2,x,R)	(q_4,\sqcup,L)	(q_6, \triangleright, R)
q_3				
q_4				

$$q_5 = q_{accept}, q_6 = q_{reject}$$

3. Steht mehr als eine 0, aber eine ungerade Anzahl von 0 auf dem Band, lehne ab.

δ	0	X	Ш	\triangleright
q_0	$(q_1, 0, R)$	(q_6, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	(q_2,x,R)	(q_1,x,R)	(q_5, \sqcup, L)	(q_6, \triangleright, R)
q_2	$(q_3, 0, R)$	(q_2,x,R)	(q_4,\sqcup,L)	(q_6, \triangleright, R)
q_3	(q_2,x,R)	(q_3,x,R)	(q_6, \sqcup, R)	(q_6, \triangleright, R)
q_4				

$$q_5 = q_{accept}, q_6 = q_{reject}$$

4. Gehe zum Beginn des Bandes und starte ersten Schritt.

δ	0	X	Ш	\triangleright
q_0	$(q_1, 0, R)$	(q_6, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	(q_2,x,R)	(q_1,x,R)	(q_5, \sqcup, L)	(q_6, \triangleright, R)
q_2	$(q_3, 0, R)$	(q_2,x,R)	(q_4,\sqcup,L)	(q_6, \triangleright, R)
q_3	(q_2,x,R)	(q_3,x,R)	(q_6, \sqcup, R)	(q_6, \triangleright, R)
q_4	$(q_4, 0, L)$	(q_4,x,L)	(q_6, \sqcup, R)	(q_0, \triangleright, R)

$$q_5 = q_{accept}, q_6 = q_{reject}$$

Berechnung von M₂ bei Eingabe 0000

q ₀ ⊳0000⊔	⊳q ₄ 0x0x⊔	⊳0q ₄ xxx⊔
⊳q ₀ 0000⊔	q ₄ >0x0x ⊔	⊳q ₄ 0xxx⊔
⊳ 0 q ₁ 000 ⊔	⊳q ₀ 0x0x⊔	q ₄ ⊳0xxx⊔
>0xq ₂ 00⊔	>0q ₁ x0x⊔	⊳q ₀ 0xxx⊔
>0x0q ₃ 0⊔	⊳0xq ₁ 0x⊔	⊳0q ₁ xxx⊔
⊳0x0xq ₂ ⊔	⊳0xxq ₂ x⊔	⊳0xq ₁ xx⊔
⊳0x0q ₄ x⊔	⊳0xxxq ₂ ⊔	⊳0xxq ₁ x⊔
⊳0xq ₄ 0x⊔	⊳0xxq ₄ x⊔	⊳0xxxq ₁ ⊔
⊳0q ₄ x0x⊔	⊳0xq ₄ xx⊔	⊳0xxq ₅ x⊔

 M_3 bei Eingabe $w \in \{0,1\}^*$:

- 1. Lese das erste Zeichen in w, merke Dir dieses Zeichen und ersetze es durch einen ⊔. w leer: akzeptiere
- 2. Gehe zum letzten Zeichen ≠ □. Passt dieses nicht zum gemerkten Zeichen, lehne ab. Sonst ersetze es mit □.
- 3. Gibt es kein Zeichen ≠ ⊔ mehr, akzeptiere (|w| ist ungerade).
- 4. Gehe zum Beginn der Eingabe und starte den ersten Schritt.

1. Lese das erste Zeichen in w, merke Dir dieses Zeichen und ersetze es durch einen ⊔. w leer: akzeptiere

δ	0	1	Ш	>
q_0	(q_1, \sqcup, R)	(q_2, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1				
q_2				
q_3				
q_4				
q_5				

$$q_6 = q_{accept}, q_7 = q_{reject}$$

2. Gehe zum letzten Zeichen ≠ □. Passt dieses nicht zum gemerkten Zeichen, lehne ab. Sonst ersetze es mit □.

δ	0	1	Ш	\triangleright
q_0	(q_1, \sqcup, R)	(q_2, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_3, \sqcup, L)	(q_7, \triangleright, R)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_4,\sqcup,L)	(q_7, \triangleright, R)
q_3	(q_5, \sqcup, L)	$(q_7, 1, L)$	(q_6, \sqcup, L)	(q_7, \triangleright, R)
q_4	$(q_7, 0, L)$	(q_5, \sqcup, L)	(q_6, \sqcup, L)	(q_7, \triangleright, R)
q_5				

$$q_6 = q_{accept}, q_7 = q_{reject}$$

3. Gibt es kein Zeichen ≠ ⊔ mehr, akzeptiere (|w| ist ungerade).

δ	0	1	Ш	\triangleright
q_0	(q_1, \sqcup, R)	(q_2, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_3, \sqcup, L)	(q_7, \triangleright, R)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_4,\sqcup,L)	(q_7, \triangleright, R)
q_3	(q_5, \sqcup, L)	$(q_7, 1, L)$	(q ₆ , ⊔, L)	(q_7, \triangleright, R)
q_4	$(q_7, 0, L)$	(q_5, \sqcup, L)	(q ₆ , ⊔, L)	(q_7, \triangleright, R)
q_5				

$$q_6 = q_{accept}, q_7 = q_{reject}$$

4. Gehe zum Beginn der Eingabe und starte den ersten Schritt.

δ	0	1	Ш	\triangleright
q_0	(q_1, \sqcup, R)	(q_2, \sqcup, R)	(q_6, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_1, 1, R)$	(q_3, \sqcup, L)	(q_7, \triangleright, R)
q_2	$(q_2, 0, R)$	$(q_2, 1, R)$	(q_4, \sqcup, L)	(q_7, \triangleright, R)
q_3	(q_5, \sqcup, L)	(q ₇ ,1,L)	(q_6, \sqcup, L)	(q_7, \triangleright, R)
q_4	$(q_7, 0, L)$	(q_5, \sqcup, L)	(q_6, \sqcup, L)	(q_7, \triangleright, R)
q_5	$(q_5, 0, L)$	$(q_5, 1, L)$	(q_0,\sqcup,R)	(q_7, \triangleright, R)

$$q_6 = q_{accept}, q_7 = q_{reject}$$

Rekursiv aufzählbare und rekursive Sprachen

Definition 2.5 Sei Σ eine endliche Menge und $L\subseteq \Sigma^*$.

- 1. L heißt rekursiv aufzählbar, wenn es eine DTM M mit Eingabealphabet Σ gibt, die L akzeptiert.
- 2. L heißt rekursiv oder entscheidbar, wenn es eine DTM M mit Eingabealphabet Σ gibt, die L entscheidet.

DTM M₁ für L={0ⁿ1ⁿ|n≥1}

δ	0	1	Ш	\triangleright
q_0	$(q_1, 0, R)$	$(q_8, 1, R)$	(q_8, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	(q_8, \sqcup, R)	(q_8, \triangleright, R)
q_2	$(q_8, 0, R)$	$(q_2, 1, R)$	(q_3, \sqcup, L)	(q_8, \triangleright, R)
q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_4, \sqcup, R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q_3, \sqcup, L)	(q_8, \sqcup, R)	(q_8, \triangleright, R)

 $q_7 = q_{accept}, q_8 = q_{reject}$

M₁ entscheidet L.

Berechnung von M₁ für Eingabe in L

q ₀ ⊳0011⊔	⊳q ₃ 0011⊔	⊳⊔ q ₃ 01 ⊔⊔
⊳q ₀ 0011⊔	q ₃ ⊳0011⊔	⊳ q ₃ ⊔ 01 ⊔⊔
⊳0q ₁ 011⊔	⊳q ₄ 0011⊔	⊳⊔ q ₄ 01 ⊔⊔
⊳00q ₁ 11⊔	⊳⊔ q ₅ 011⊔	⊳⊔⊔ q ₅ 1 ⊔⊔
>001q ₂ 1⊔	⊳⊔ 0 q ₅ 11⊔	>⊔⊔ 1q ₅ ⊔⊔
>0011q ₂ ⊔	⊳⊔ 01q ₅ 1⊔	⊳⊔⊔ q ₆ 1⊔⊔
>001q ₃ 1⊔	⊳⊔ 011 q ₅ ⊔	⊳⊔ q ₃⊔⊔⊔⊔
⊳00q ₃ 11⊔	⊳⊔ 01q ₆ 1⊔	⊳⊔⊔ q ₄⊔⊔⊔
>0q ₃ 011⊔	⊳⊔ 0q ₃ 1 ⊔⊔	⊳⊔⊔⊔ q ₇ ⊔⊔

Berechnung von M₁ für Eingabe nicht in L

- W= ϵ : $q_0 \triangleright \sqcup \rightarrow \triangleright q_0 \sqcup \rightarrow \triangleright \sqcup q_8$
- w=0+: $q_0 \triangleright 0^+ \sqcup \rightarrow \triangleright q_0 0^+ \sqcup \rightarrow \triangleright 0 q_1 0^* \sqcup \rightarrow \ldots \rightarrow \triangleright 0^+ q_1 \sqcup \rightarrow \triangleright 0^+ \sqcup q_8$
- $w=1\{0,1\}^*$: $q_0 \triangleright 1\{0,1\}^* \sqcup \rightarrow \triangleright q_0 1\{0,1\}^* \sqcup \rightarrow \triangleright 1q_8\{0,1\}^* \sqcup$
- $w=0^{+}1^{+}0\{0,1\}^{*}$: $q_{0} \triangleright 0^{+}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright q_{0}0^{+}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright 0q_{1}0^{*}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \ldots \rightarrow \triangleright 0^{+}q_{1}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright 0^{+}1q_{2}1^{*}0\{0,1\}^{*} \to \ldots \rightarrow \triangleright 0^{+}1^{+}q_{2}0\{0,1\}^{*} \rightarrow \triangleright 0^{+}1^{+}0q_{8}\{0,1\}^{*}$

Berechnung von M₁ für Eingabe nicht in L

 $\begin{array}{lll} \bullet & \text{w=0}^{\text{n}1^{\text{m}}}, \text{ n,m} \geq 1, \text{ n>m} \colon \\ & \text{q}_0 \rhd 0^{\text{n}1^{\text{m}}} \sqcup \rightarrow \rhd \text{q}_0 0^{\text{n}1^{\text{m}}} \sqcup \rightarrow \rhd 0 \text{q}_1 0^{\text{n-1}1^{\text{m}}} \sqcup \\ & \rightarrow \ldots \rightarrow \rhd 0^{\text{n}} \text{q}_1 1^{\text{m}} \sqcup \rightarrow \rhd 0^{\text{n}1} \text{q}_2 1^{\text{m-1}} \sqcup \\ & \rightarrow \ldots \rightarrow \rhd 0^{\text{n}1^{\text{m}}} \text{q}_2 \sqcup \rightarrow \rhd 0^{\text{n}1^{\text{m-1}}} \text{q}_3 1 \sqcup \\ & \rightarrow \ldots \rightarrow \Rightarrow 0^{\text{n}1^{\text{m}}} \sqcup \rightarrow \rhd \text{q}_4 0^{\text{n}1^{\text{m}}} \\ & \rightarrow \ldots \rightarrow \rhd \sqcup^{\text{m}} \text{q}_4 0^{\text{n-m}} \sqcup \rightarrow \ldots \rightarrow \rhd \sqcup^{\text{m+1}} 0^{\text{n-m-1}} \text{q}_5 \sqcup \\ & \rightarrow \rhd \sqcup^{\text{m+1}} 0^{\text{n-m-2}} \text{q}_6 0 \sqcup \rightarrow \rhd \sqcup^{\text{m+1}} 0^{\text{n-m-1}} \text{q}_8 \sqcup \\ \end{array}$

 w=0ⁿ1^m, n,m≥1, n<m: ähnliche Rechnung führt auch zu q₈.

D.h. M₁ lehnt alle Worte nicht in L ab. (Einfach nur halten reicht nicht, siehe Def. der Entscheidbarkeit!)

DTM M_1 für $L=\{0^n1^n|n\geq 1\}$

δ	0	1	Ш	\triangleright
q_0	$(q_1, 0, R)$	$(q_8, 1, R)$	(q_8, \sqcup, R)	(q_0, \triangleright, R)
q_1	$(q_1, 0, R)$	$(q_2, 1, R)$	(q_1,\sqcup,R)	(q_8, \triangleright, R)
q_2	$(q_8, 0, R)$	$(q_2, 1, R)$	(q_3, \sqcup, L)	(q_8, \triangleright, R)
q_3	$(q_3,0,L)$	$(q_3, 1, L)$	(q_4, \sqcup, R)	(q_4, \triangleright, R)
q_4	(q_5, \sqcup, R)	$(q_8, 1, R)$	(q_7, \sqcup, R)	(q_8, \triangleright, R)
q_5	$(q_5, 0, R)$	$(q_5, 1, R)$	(q_6, \sqcup, L)	(q_8, \triangleright, R)
q_6	$(q_8, 0, R)$	(q_3, \sqcup, L)	(q_8, \sqcup, R)	(q_8, \triangleright, R)

 $q_7 = q_{accept}, q_8 = q_{reject}$

M₁ akzeptiert L.

Berechnung von M₁ für Eingabe nicht in L

- W= ϵ : $q_0 \triangleright \sqcup \rightarrow \triangleright q_0 \sqcup \rightarrow \triangleright \sqcup q_8$
- w=0*: $q_0 \triangleright 0^+ \sqcup \rightarrow \triangleright q_0 0^+ \sqcup \rightarrow \triangleright 0 q_1 0^* \sqcup \rightarrow \ldots \rightarrow \triangleright 0^+ q_1 \sqcup \rightarrow \triangleright 0^+ \sqcup q_1 \sqcup \rightarrow \ldots$ Endlosrechnung!
- $w=1\{0,1\}^*$: $q_0 \triangleright 1\{0,1\}^* \sqcup \rightarrow \triangleright q_0 1\{0,1\}^* \sqcup \rightarrow \triangleright 1q_8\{0,1\}^* \sqcup$
- $w=0^{+}1^{+}0\{0,1\}^{*}$: $q_{0} \triangleright 0^{+}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright q_{0}0^{+}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright 0q_{1}0^{*}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \cdots \rightarrow \triangleright 0^{+}q_{1}1^{+}0\{0,1\}^{*} \sqcup \rightarrow \triangleright 0^{+}1q_{2}1^{*}0\{0,1\}^{*} \sqcup \rightarrow \cdots \rightarrow \triangleright 0^{+}1^{+}q_{2}0\{0,1\}^{*} \rightarrow \cdots \rightarrow \triangleright 0^{+}1^{+}q_{2}0\{0,1\}^{*} \rightarrow \cdots \rightarrow \triangleright 0^{+}1^{+}q_{2}0\{0,1\}^{*}$

Berechnung von Funktionen

Definition 2.6 DTM M = $(Q, \Sigma, \Gamma, \delta)$. Die DTM M berechnet die Funktion f : $\Sigma^* \to \Gamma^* \setminus \{\triangleright, \sqcup\}$, falls für alle w $\in \Sigma^*$ die Berechnung von M mit Eingabe w in einer akzeptierenden Konfiguration hält und dabei der Bandinhalt f(w) ist. Hierbei werden \triangleright und alle \sqcup ignoriert.

Wir werden uns hauptsächlich mit Entscheidbarkeit beschäftigen.

Zusammenfassung

- Turingmaschinen als Berechnungsmodell
- Berechnung von DTMs Rechenschritte, Konfigurationen,
 Nachfolgekonfigurationen
- Akzeptieren/Ablehnen von Worten/Eingaben
- Akzeptieren/Entscheiden von Sprachen
- Unterschied zwischen Akzeptieren und Entscheiden