Advanced Algorithms WS 2019

Homework Assignment 4

Problem 11:

Prove Theorem 3.10.

Problem 12:

Consider the problem of distributing n balls among n bins as evenly as possible, and suppose we are using the following RANDOM strategy for this: For each ball, pick a bin uniformly and independently at random.

Compute the expected number of balls in a bin and show that with high probability (i.e., with probability at least 1-1/n) every bin has at most $c \log n / \log \log n$ many balls, for a sufficiently large constant c.

(Hint: First, show that the probability is at most $1/n^2$ that some fixed bin i has at least $c \log n / \log \log n$ many balls, and conclude from that that the probability is at most 1/n that there is a bin with at least $c \log n / \log \log n$ many balls.)

Problem 13:

Consider the following online job scheduling problem: The input sequence σ consists of a sequence of jobs J_1, \ldots, J_n , where each J_i requires some time $t_i \in \mathbb{N}$ to be processed. The task of the online algorithm is to assign each job to one of m machines, M_1, \ldots, M_m , so that the makespan is minimized, where the makespan is the maximum over all machines of the total time needed by a machine to process the jobs assigned to it.

Suppose we use the simple online algorithm RANDOM: for each job J_i , choose a machine uniformly and independently at random.

- (a) Determine the expected total time needed by a specific machine M_i to process the jobs assigned to it.
- (b) Determine the variance of the total time needed by a specific machine M_i to process the jobs assigned to it.
- (c) Find an upper bound on the expected makespan of algorithm RANDOM (recall that the makespan is the *maximum* total runtime assigned to a machine). For that, use either Chebychev's inequality or the Chernoff bounds to bound the deviation from the expected total runtime for a single machine, and conclude from that on the makespan.

(For the Chernoff bounds, you may assume that it also holds if the variables X_i satisfy $X_i \in [0,1]$ instead of $X_i \in \{0,1\}$. For that to hold, you may have to renormalize the X_i 's if, for example, X_i is defined as $X_i \in \{0,t_i\}$ for some $t_i \in \mathbb{N}$.)