Attribute-Based Encryption with Non-Monotonic Access Structures

Julian Kratzmann

Department of Computer Science
University of Paderborn

Project Group: Cryptographic Access Control for Large Scale Systems (CrACo), July 2013
Outline

1 Non Monotonic Access Structures
 Example
 Access Structure

2 Scheme
 Requirements
 Idea
 Construction

3 Security
 Game
 BDH Assumption
 Proof Sketch
Outline

1 Non Monotonic Access Structures
 Example
 Access Structure

2 Scheme
 Requirements
 Idea
 Construction

3 Security
 Game
 BDH Assumption
 Proof Sketch
Non Monotonic Access Structures

Example

Large Company

- employee from department marketing
- information marketing
- information about people
- no information about employees

Attributes:

marketing := \(p_1 \)
people-information := \(p_2 \)
employee := \(p_3 \)
Problems with Non Monotonic

- How to prove non existence
- LSSS works only with monotone access structures
- Simplest solution: add all negated attributes as new attributes to access structure
- ⇒ Problem: for every ciphertext all negative attributes have to be added
- Challenge: Use the idea without doubling the universe of attributes
Access Structure

Definition

Let $\{P_1, P_2, \ldots, P_n\}$ be a set of parties. A collection $A \subseteq 2^{\{P_1, P_2, \ldots, P_n\}}$ is monotone if $\forall B, C: \text{if } B \in A \text{ and } B \subseteq C \text{ then } C \in A$. An access structure (respectively, monotone access structure) is a collection (respectively, monotone collection) A of non-empty subsets of $\{P_1, P_2, \ldots, P_n\}$, i.e. $A \subseteq 2^{\{P_1, P_2, \ldots, P_n\}} \setminus \{\emptyset\}$. The sets in A are called the authorized sets, and the sets not in A are called the unauthorized sets.
Non monotonic access structure:

\[\tilde{P} = \{p_1, p_2, p_3\} \]

\[\tilde{A} = \{\{p_1\}, \{p_2\}, \{p_1, p_2\}, \{p_1, p_3\}, \{p_1, p_2, p_3\}\} \]

Corresponding monotonic access structure:

\[P = \{p_1, p_2, p_3, \overline{p_1}, \overline{p_2}, \overline{p_3}\} \]

\[A = \{\{p_1\}, \ldots \text{ all with } p_1 \ldots, \{p_2, \overline{p_3}\}, (p_2, \overline{p_3}, \overline{p_1}), \{p_2, \overline{p_3}, \overline{p_2}\}, \{p_2, \overline{p_3}, p_3\}, \{p_2, \overline{p_3}, \overline{p_2}, \overline{p_1}\}, \{p_2, \overline{p_3}, \overline{p_1}, p_3\}, \{p_2, \overline{p_3}, \overline{p_2}, p_3\}, \{p_2, \overline{p_3}, \overline{p_2}, p_3, \overline{p_1}\}\} \]
Outline

1 Non Monotonic Access Structures
 Example
 Access Structure

2 Scheme
 Requirements
 Idea
 Construction

3 Security
 Game
 BDH Assumption
 Proof Sketch
Requirements
LSSS

Definition (Linear Secret Sharing Schemes)

A secret-sharing scheme Π over a set of parties P is called linear (over \mathbb{Z}_p) if

1. The shares for each party form a vector over \mathbb{Z}_p.
2. There exists a matrix M called the share-generation matrix for Π. The Matrix M has l rows and n columns. For all $i = 1, \ldots, l$, the i'th row of M is labeled with a party named $\hat{x} \in P$. When we consider the column vector $v = (s, r_1, \ldots, r_n)$, where $s \in \mathbb{Z}_p$ is the secret to be shared, and $r_1, \ldots, r_n \in \mathbb{Z}_p$ are randomly chosen, then Mv is the vector of l shares of the secret s according to Π. The share $(Mv)_i$ belongs to party \hat{x}.
Definition (Linear Reconstruction Property)

Suppose that Π is a Linear Secret Sharing Scheme for the access structure \mathbb{A}. Let $S \in \mathbb{A}$ be any authorized set, and let $I \subset \{1, 2, \ldots, l\}$ be defined as $I = \{i : \hat{x}_i \in S\}$. Then, there exist constants $\{\omega_i \in \mathbb{Z}_p\}_{i \in I}$ such that, if $\{\lambda_i\}$ are valid share of any secret s according to Π, then

$$\sum_{i \in I} \omega_i \lambda_i = s.$$

These constants $\{\omega_i\}$ can be found in time polynomial in the size of the share-generating matrix M.

Requirements

LSSS
Definition (Bilinear Maps)

Let G and G_T be two cyclic groups of prime order p. Let g be a generator of G and e be a bilinear map:

$$e : G \times G \rightarrow G_T$$

The bilinear map e has the following properties:

1. **Bilinearity:** for all $u, v \in G$ and $a, b \in \mathbb{Z}_p$, we have
 $$e(u^a, v^b) = e(u, v)^{ab}.$$

2. **Non-degeneracy:** $e(g, g) \neq 1$.

Requirements
Bilinear Maps
Attribute Based Encryption Scheme

Setup:
- input: security parameter (implicit)
- output: public parameters PK and master key MK

Encryption:
- input: message m, set of attributes γ, PK
- output: ciphertext E_γ

Key Generation:
- input: access structure A, PK, MK
- output: decryption key D_A

Decryption
- input: E_γ, D_A, PK
- output m if $\gamma \in A$
Idea

- Secret Key:
 - for each leaf in the tree (positive and negative attributes) generate a key D_i

- Encryption:
 - Encryption parameter for each positive attribute
 - One item E_{not} for all negative attributes

![Diagram of a decision tree with nodes labeled with conditions and keys]

Scheme Idea Julian Kratzmann 12/25
Setup\((d)\)

\((p, \mathbb{G}, \mathbb{G}_T, g \in \mathbb{G}, e) \leftarrow \mathcal{G}(1^n)\)

\(\alpha, \beta \leftarrow \mathbb{Z}_p^*, \quad g_1 = g^\alpha, \quad g_2 = g^\beta, \quad MK = \alpha\)

\(h(x), q(x) \leftarrow \mathbb{Z}_p[x] \text{ of } \text{deg}(d) \quad q(0) = \beta\)

\(PK = (g, g_1; g_2 = g^{q(0)}, \ldots, g^{q(d)}; g^{h(0)}, \ldots, g^{h(d)})\)

\(T(x) = g_2^x g^{h(x)}\)

\(V(x) = g^{q(x)}\)
Construction

Encryption

Enc(\(m, \gamma, PK\))

\[
\begin{align*}
\text{Attributes } & \gamma \subset \mathbb{Z}_p^*, \quad |\gamma| = d, \quad s \leftarrow \mathbb{Z}_p^* \\
E & = (\gamma, E^1 = m \cdot e(g_1, g_2)^s, E^2 = g^s, \\
& \{ E^3_x = T(x)^s \}_{x \in \gamma}, E_{\text{not}} = \{ E^4_x = V(x)^s \}_{x \in \gamma})
\end{align*}
\]
Construction

Key Generation

KeyGen(\tilde{A}, MK, PK)

Let A correspond to \tilde{A} and Π a LSSS for A and α.
Let $\{\lambda_i\}$ be shares from Π for secret α corresponds to a positive or negative attribute.

$r_i \leftarrow \mathbb{Z}_p$

For each λ_i which correspond to an positive attribute:

$$D_i = \left(D_i^1 = g^{\lambda_i} \cdot T(x_i)^{r_i}, D_i^2 = g^{r_i} \right)$$

For each λ_i which corresponds to an negative attribute:

$$D_i = \left(D_i^3 = g^{\lambda_i + r_i}, D_i^4 = V(x_i)^{r_i}, D_i^5 = g^{r_i} \right)$$
Dec(E, D)

Finally we want to compute

$$\frac{E^{(1)}}{\prod_{i \in I} Z_i^{\omega_i}} = \frac{E^{(1)}}{\prod_{i \in I} e(g_2, g)^{s\lambda_i \omega_i}} = \frac{me(g_2, g)^{s\alpha}}{e(g_2, g)^{s\alpha}} = m$$

For every positive attribute:

$$Z_i = \frac{e(D_i^{(1)}, E_i^{(2)})}{e(D_i^{(2)}, E_i^{(3)})} = e(g_2, g)^{s\lambda_i}$$
For every negative attribute:

• \(\gamma_i = \gamma \cup x_i \)
• \(\Delta_{i,S}(y) = \prod_{j \in S, j \neq i} \frac{y-j}{i-j} \)
• \(\sigma_x = \Delta_{x,\gamma_i}(0) \)
• \(\sum_{x \in \gamma_i} \sigma_x q(x) = q(0) = \beta \)

\[
Z_i = \frac{e \left(D_i^{(3)}, E^{(2)} \right)}{e \left(D_i^{(5)}, \prod_{x \in \gamma} (V(x)^s)^{\sigma_x} \right) \cdot e \left(D_i^{(4)}, E^{(2)} \right)^{\sigma_{xi}}} = e \left(g_2, g \right)^{s \lambda_i}
\]
Outline

1. Non Monotonic Access Structures
 - Example
 - Access Structure

2. Scheme
 - Requirements
 - Idea
 - Construction

3. Security
 - Game
 - BDH Assumption
 - Proof Sketch
Selective Set Model for ABE ABE-SelSet_{A,Γ}^{CPA}(n)

Init: adversary A declares set of attributes $γ$ to be challenged on

Setup: challenger runs setup(1^n) and gives PK to A

Phase 1: A queries private keys for Access Structures A_j where $γ ∉ A_j$ for all j

Challenge: A submits m_0, m_1 with $|m_0| = |m_1|$, $b ← \{0, 1\}$, encrypt m_b with $γ$ and return ciphertext to A

Phase 2: same as Phase 1

Guess: A outputs $b' ∈ \{0, 1\}$ Output 1 if $b = b'$ else output 0

Write ABE-SelSet_{A,Γ}^{CPA}(n) = 1, if output is 1. Say A has succeeded or A has won.
An attribute-based encryption scheme is secure in the selectivest-set model of security if for every ppt adversary A there is a negligible function $\mu : \mathbb{N} \rightarrow \mathbb{R}^+$ such that

$$\Pr \left[\text{ABE-SelSet}^{CPA}_{A,\Gamma}(n) = 1 \right] \leq \frac{1}{2} + \mu(n)$$
Let $a, b, c, z \rightarrow \mathbb{Z}_p$, g generator for \mathbb{G}. The decisional bilinear Diffie-Hellman assumption according to $\mathcal{G}(1^n)$ is that every ppt B can not distinguish the tuple $(g^a, g^b, g^c, e(g, g)^z)$ from the tuple $(g^a, g^b, g^c, e(g, g)^{abc})$ with probability greater $\mu(n)$ where $\mu(n)$ is negligible.

$$\left| \Pr \left[B \left(g^a, g^b, g^c, e(g, g)^z \right) = 1 \right] - \Pr \left[B \left(g^a, g^b, g^c, e(g, g)^{abc} \right) = 1 \right] \right| = \mu(n)$$
Proof Sketch

B gets $A = g^a$, $B = g^b$, $C = g^c$, $Z = g^z$ or g^{abc}

- **Init**: A chooses $\gamma \in \mathbb{Z}_p^*$, $|\gamma| = d$, $\gamma = (x_1, \ldots, x_d)$

- **Setup**:
 - $g_1 = A$, $g_2 = B$
 - $\theta_{x_1}, \ldots, \theta_{x_d} \leftarrow \mathbb{Z}_p$

 - $f(x) \leftarrow \mathbb{Z}_p[x]$ of $\deg(d)$

 $u(x) = -x^d \forall x \in \gamma$ and $u(x) \neq -x^d \forall x \notin \gamma$

 - $PK = (g, A; B, g^{\theta_1}, \ldots, g^{\theta_d}; B^{u(0)} \cdot g^{f(0)}, \ldots, B^{u(d)} \cdot g^{f(d)})$

- **Phase 1**: ...
Proof Sketch

• Challenge:
 • get \(m_0, m_1 \) from A
 • \(\nu \leftarrow \{0, 1\} \)
 • output \(E = (\gamma, E^{(1)} = m_{\nu} Z, E^{(2)} = C, \)
 \[\{E^{(3)}_x = Cf(x)\}_{x \in \gamma}, \{E^{(4)}_x = C^{\theta x}\}_{x \in \gamma} \]

• Phase 2: ...

• Guess:
 • get \(\nu' \in \{0, 1\} \) from A
 • if \(\nu = \nu' \) output 1, else 0
Proof Sketch

Probability

- \(\Pr[\text{ABE-SelSet}_{A,\Gamma}^{\text{CPA}}(n) = 1] = \frac{1}{2} + \epsilon(n) \)
- \(|\Pr\left[B\left(g^a, g^b, g^c, e(g, g)^z\right) = 1\right] - \Pr\left[B\left(g^a, g^b, g^c, e(g, g)^{abc}\right) = 1\right]| = \mu(n) \)
- \(\Pr\left[B\left(g^a, g^b, g^c, e(g, g)^z\right) = 1\right] = \Pr[v = v'|z \leftarrow \mathbb{Z}_p] = \frac{1}{2} \)
- \(\Pr\left[B\left(g^a, g^b, g^c, e(g, g)^{abc}\right) = 1\right] = \Pr[v = v'|z \leftarrow \mathbb{Z}_p] = \frac{1}{2} + \epsilon(n) \)

\[
\left| \Pr[v = v'|z \leftarrow \mathbb{Z}_p] - \Pr[v = v'|z \leftarrow \mathbb{Z}_p] \right|
= \left| \frac{1}{2} - \frac{1}{2} - \epsilon(n) \right|
= \epsilon(n) \Rightarrow \epsilon(n) \text{ negl.}
\]
Ostrovsky, Rafail and Sahai, Amit and Waters, Brent
Attribute-based encryption with non-monotonic access structures
Proceedings of the 14th ACM conference on Computer and communications security CCS ’07